CW-translations of homogeneous Finsler spaces with (α,β)-metrics
Main Article Content
Abstract
In the present paper, we consider homogeneous Finsler spaces with (α,β)-metrics. Taking a vector field X on these spaces, we find the necessary condition for X to be Killing vector field and extend the concept to Riemannian metric α. Next, we find the sufficient conditions for X to be a Killing vector field of constant length on the Finsler spaces with square metric and Randers change of square metrics. Further by dropping the restriction to the Killing vector fields, we study CW-translations of left invariant Finsler metrics on compact Lie groups.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
J. A. Wolf, Homogeneity and bounded isometries in manifolds of negative curvature, Illinois Journal of Mathematics 8, (1964), 14-18.
R. Azencott, E. Wilson, Homogeneous manifolds with negative curvature I, Transactions of the American Mathematical Society, 215 (1976), 323-362.
E. Heintze, On homogeneous manifolds of negative curvature, Mathematische Annalen, 211 (1974), 23-34.
S. Deng, Clifford-Wolf translations of Finsler spaces of Finsler spaces of negative flag curvature, preprint.
D. Bao, S. S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, New York, 2000.
S. S. Chern, Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, Vol. 6, World Scientific, Singapore, 2005.
S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics, New York, 2012.
J. M. Lee, Introduction to Smooth Manifolds, second edition, GTM 218, Springer, New York, 2013.
M. Matsumoto, On C-reducible Finsler-spaces, Tensor, N. S. 24, (1972), 29-37.
M. Matsumoto, A slope of a mountain is a Finsler surface with respect ot time measure, J. Math. Kyoto Univ. 29, (1989), 17-25.
S. Deng, M. Xu, Clifford-Wolf translations of Finsler spaces, Forum Math. 26, (2014), 1413-1428.
M. Xu, S. Deng, Clifford-Wolf homogeneous Randers spaces, Journal of Lie Theory 23, 3 (2013), 837-845.
S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific J. Math, 207 (2002), 149-157.
P. L. Antonelli, R. S. Ingarden, M. Matsumoto, The Theory of Sprays and Finsler spaces with Applications in Physics and Biology, Vol. 58, Springer Science & Business Media, 2013.
V. N. Berestovskii, Y. G. Nikonorov, Clifford-Wolf homogeneous Riemannian manifolds, Journal of Differential Geometry 82, 3 (2009), 467-500.
S. S. Chern, Finsler geometry is just Riemannian geometry without quadratic restriction, Notices of AMS 43, 9 (1996), 959-963.
S. Deng, M. Xu, Clifford-Wolf translations of homogeneous Randers spheres, Israel Journal of Mathematics 199, (2014), 507-525.
K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76, (1954), 33-65.
T. Ochiai and T. Takahashi, The group of isometries of a left invariant metric on a Lie group, Math. Ann. 223 (1976), 91–96.
V. Ozols, Clifford translations of symmetric spaces, Proceedings of the American Mathematical Society 44, 1 (1974), 169-175.
S. Rani and G. Shanker, On CW-translations of homogeneous Finsler spaces with (α,β)-metrics, Balkan Journal of Geometry and Its Applications, 26, (2021), 58-68.