Selective Growth of Uniform Graphene Films on Metallic (Cu and Au) Substrates Uniform Graphene Films

Main Article Content

Ch. Ravi Prakash Patel
Kalpana Awasthi
Thakur Prasad Yadav

Abstract

 


We report the synthesis of single and bi-layer graphene films by the low-pressure chemical vapor deposition (LPCVD) technique on Cu and Au substrates. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Raman spectroscopy techniques were used to characterize the films as they were produced. As evidenced by SEM and TEM, the growth of graphene takes place through surface adsorption. The large lateral area (1cm х 1cm) graphene deposited on Cu can easily be transferred on Si/SiO2. It has been shown that in Cu Substrate, it is adsorption of carbon on the substrate through which graphene gets formed. In the case of Au substrate both the adsorption and diffusion-precipitation lead to the growth of graphene.

Article Details

How to Cite
1.
Ch. Ravi Prakash Patel, Kalpana Awasthi, Yadav TP. Selective Growth of Uniform Graphene Films on Metallic (Cu and Au) Substrates Uniform Graphene Films. J. Int. Acad. Phys. Sci. [Internet]. 2022 Jun. 15 [cited 2024 May 21];26(2):175-84. Available from: https://www.iaps.org.in/journal/index.php/journaliaps/article/view/940
Section
Articles

References

A. K. Geim and K.S. Novoselov, The rise of graphene, Nature Materials 6 (2007) 183-191.

C. Soldano, A. Mahmood and E. Dujardin, Production, Properties and Potential of Graphene, Carbon 48(2010) 2127-2150.

R. Maa, Y. Zhoua, H. Bia, M. Yang, J. Wanga, Q. Liua and F. Huanga, Multidimensional graphene structures and beyond: Unique properties, syntheses and applications, Prog. Mat. Sci. 113 (2020) 100665 (1-119).

H. Yang, L. Geng, Y. Zhang, G. Chang, Z. Zhang, X. Liu, M. Lei and Y. B. He, Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell, Appl. Surface Sci. 466 (2019) 385-392.

A.T. Lawal, Progress in utilisation of graphene for electrochemical biosensors, Biosens. Bioelect. 106 (2018) 149-178.

K.S. Novoselov, A.K. Geim, S.V.Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber and T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nature Materials 8 (2009) 203-207.

S. Some, Y. Kim, Y. Yoon, H. Yoo, S. Lee, Y. Park and H. Lee, High-quality reduced graphene oxide by a dual-function chemical reduction and healing process, Sci. Report 3 (2013) 1929 (1-5).

I. Lee, D.J. Bae, W.K. Lee, C.-M. Yang, S.W. Cho, J. Nam, D.Y. Lee, A.- R. Jang, H.S. Shin, J.Y. Hwang, S. Hong, K.S. Kim, Rapid synthesis of graphene by chemical vapor deposition using liquefied petroleum gas as precursor, Carbon 145 (2019) 462-469.

S. Maryam, Y. Alshammari, S. A. Majeed and E. Al-Nasrallah, Chemical vapour deposition of graphene-synthesis, characterisation and applications: A Review, Molucules 25 (2020) 3856 (1-62).

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First and W.A. de Heer, Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science 312 (2006) 1191-1196.

C. Mattevi, H. Kim and M. Chhowall, A review of chemical vapour deposition of graphene on copper, J. Mat. Chem. 21 (2011) 3324-3334.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus and J. Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters 9 (2009) 30-35.

S-Y Kwon, C.V. Ciobanu, V. Petrova, V.B. Shenoy, J. Bareno, V. Gambin, I. Petrov and S. Kodambaka, Growth of Semiconducting Graphene on Palladium, Nano Letters 9 (2009) 3985-3990.

P.W. Sutter, J-I Flege and E.A. Sutter, Epitaxial graphene on ruthenium, Nature Mat. 7 (2008) 406-411.

J. Coraux, A.T. N’Diaye, C. Busse and T. Michely, Structural coherency of graphene on Ir (111), Nano Letters 8 (2008) 565-570.

T.F. Chung, T. Shen, H. Cao, L.A. Jauregui, W.E.I. Wu, Q. Yu, D. Newell and Y.P. Chen, Synthetic graphene grown by chemical vapor deposition on copper foils, Int. J. Modern Phys. B 27 (2013) 1341002(1-14).

W. Liu, H. Li, C. Xu, Y. Khatami and K. Banerjee, Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition, Carbon 49 (2011) 4122-4130.

T. Oznuluer, E. Pince, E.O. Polat, O. Balci, O. Salihoglu and C. Kocabas, Synthesis of graphene on gold, Appl. Phys. Lett. 98 (2011) 183101(1-4).

J. Zhang , P. A. Hua, X. Wanga and Z. Wang, Structural evolution and growth mechanism of graphene domains on copper foil by ambient pressure chemical vapor deposition,Chem. Phys. Lett. 536 (2012) 123-128.

H. Okamoto and T.B. Massalski, The Au-C (Gold-Carbon) system, Bulletin of Alloy Phase Diag. 5 (1984) 378-379.

X. Li, W. Cai, L. Colombo and R. S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett. 9 (2009) 4268-4272.

R. Gadde, B. Kiran, B. Chandu, G. Swati, S. Acharyya, and V. S. S. Srikanth, One-step synthesis of bulk quantities of graphene from graphite by femtosecond laser ablation under ambient conditions, Phil. Mag. Letts. 97 (2017) 229-234.