Fluid transport in a tube of variable cross-sectional area by peristaltic waves of dilating amplitude: A mathematical model for investigating impact of hiatus hernia on swallowing Fluid transport in a tube of variable cross-section

Main Article Content

SK Pandey
Shailendra Kumar Tiwari
Kushagra Pandey

Abstract

In order to extract new inferences to help medical intervention, this paper aims to construct a mathematical model to suitably characterize swallowing in an oesophagus which suffers from sliding hiatus hernia. In such a state of dysfunction of oesophagus, the stomach moves upward through the hiatal orifice; due to which, there is a widening above the hiatus.


We make an attempt to mathematical formulate the circumstances created due to herniation, The formulation is in the dimensionless parameters using the long wavelength and low Reynolds number approximations modelling Newtonian flows in tubes, converging and diverging  partially,  or converging somewhere and diverging somewhere else.


The model validates the practical observations and gives some clues of the impact of partial convergence and divergence on pressure distribution. Less pressure is required for flow if the tube diverges but pressure has to be increased if the tube converges. It is further inferred from computer simulation that even if merely the lower part diverges, pressure is affected right from the beginning of flow. In case of sliding hiatal hernia, it is expected, pressure requirement for swallowing will be less due to oesophageal widening near the lower sphincter. It is even an experimental report that hiatus hernia reduces LES pressure. When the oesophagus converges, unlike this, pressure requirement for flow is more. This convergence may be an alarming situation. If hiatus hernia goes unnoticed, it is suspected that the narrowed part is less than the widened part. This inference can also be useful in peristaltically driven engineering applications.

Article Details

How to Cite
1.
SK Pandey, Shailendra Kumar Tiwari, Kushagra Pandey. Fluid transport in a tube of variable cross-sectional area by peristaltic waves of dilating amplitude: A mathematical model for investigating impact of hiatus hernia on swallowing Fluid transport in a tube of variable cross-section. J. Int. Acad. Phys. Sci. [Internet]. 2022 Mar. 15 [cited 2024 May 17];26(1):1-16. Available from: https://www.iaps.org.in/journal/index.php/journaliaps/article/view/930
Section
Articles

References

R. K. Mittal, D. H. Balban; The oesophagogastric junction, N Engl J Med, 336 (1997) 924-932.

P. J. Homby, T. P. Abrahams, E. R. Partosoedarso; Central mechanisms of lower oesophageal sphincter control, Gastroenterol Clin North Am, 31(Suppl. 4) (2002) S11-S20.

G. E. Boeckxstaens; The lower oesophageal sphincter, Neurogast Motil, 17 (Suppl 1) (2005) 13–21.

R. K. Goyal, R. Padmnabham, Q. Sang; Neural circuits in swallowing and abdominal vagal afferent-mediated lower esophageal sphincter relaxation, Am J Med 111Suppl, (8A) (2001) 95-105.

P. J. Kahrilas, S. Lin, J. Chen, M. Manka; The effect of hiatus hernia on gastro-oesophageal junction pressure, Gut, 44 (1999) 476–482.

G. Stene-Larsen, R.Weberg, Froyshov, I. Larsen, O. Bjortuft, B. Hoel, A. Berstad; Relationship of Overweight to Hiatus Hernia and Reflux Oesophagitis, Scand J Gastroent, 23 (1988) 427-432.

S. Roman, P. J. Kahrilas; The diagnosis and management of hiatus hernia Clinical review, BMJ, 349(2014) 61-54.

E. Joel, Richter, C. Wallace, W. Doree, N. John, Blackwell, L. Joseph, Nelson III, A. June, Castell Donald, Castell; Esophageal manometry in 95 healthy adult volunteers Variability of pressures with Age and frequency of abnormal contractions, Digest Disease Sci, 32 (1987) 583-592.

P. J. Kahrilas, Wu, S, S. Lin, P. Pouderoux; Attenuation of esophageal shortening during peristalsis with hiatus hernia, Gastroent, 109 (1995) 1818-1825.

S. K. Pandey, G. Ranjan, S. K. Tiwari, K. Pandey; Variation of pressure from cervical to distal end of oesophagus during swallowing Study of a mathematical model, Math Biosci, 288 (2017) 149-158.

F. Xia, J. Mao, J. Ding, H. Yang; Observation of normal appearance and wall thickness of oesophagus on CT Images, Euro J Radio, l72 (2009) 406-411.

S. K. Pandey, S. K. Tiwari; Swallowing of Casson fluid in oesophagus under the influence of peristaltic waves of varying amplitude, Intl J Biomath, 10(2) (2017) 1750017-(1-16).

S.K. Pandey, S. Chandra; Transportation of micro-polar fluid by dilating peristaltic waves, J of King Saud University -Science, 32 (2020) 2939–2949.

S. K. Pandey, A. Singh; Unsteady peristaltic transport of a particle–fluid suspension: application to oesophageal swallowing, Z Naturforsch A, 73 (2018) 8-30.

S. K. Pandey, S. K. Tiwari; Fluid transport with suspended particles by means of dilating peristaltic waves, SN Appl. Sci., 2(2020) 853, https://doi.org/10.1007/s42452-019-1735-2.

B. B. Gupta, V. Seshadri; Peristaltic pumping in non-uniform tubes, J Biomech, 9 (1976), 105-109.

S. K. Guha, H. Kaur, H. Ahmed; Mechanics of fluid transport in the vas deferens, Med BiolEng,13 (1975) 518-522.

L. M . Srivastava, V. Srivastava; Peristaltic transport of a physiological fluid Part I-Flow in a non-uniform geometry, Biorheol, 20 (1983) 153-168.

L. M. Srivastava, V. Srivastava; Peristaltic transport of blood: Casson model II, J Biomech, 17 (1984) 821-829.

L. M . Srivastava, V. Srivastava; Peristaltic Transport of a non-Newtonian fluid: Application to the vas deferens and small intestine, An Biomed Eng, 13 (1985) 137-153.

J. C. Misra, S. K. Pandey; Peristaltic transport in a tapered tube, Math Comput Model, 22 (1995) 137-151.

S. K. Pandey, M. K. Chaube; Peristaltic Transport of a Viscoelastic Fluid in a tube of varying Cross-section, Math Comput Mode, l52 (2010) 501-514.

S. K. Pandey, M. K. Chaube; Peristaltic transport of a Maxwell fluid in a channel of varying cross section induced by asymmetric waves: application to embryo transport within uterine cavit, J Mech Med Biol, 11(3) (2011) 675-690.

P . Hariharan, V. Seshadri, R. K. Banerjee; Peristaltic transport of non-Newtonian fluid in a diverging tube with different wave forms, Math Comput Model, 48(7) (2008) 998–1017.

M. J. Manton; Low Reynolds number flow in slowly varying axisymmetric tubes, J fluid Mech, 49(3) (1971) 451-459.

A. Safia, A. Farkhanda, A. Qamar; Impact of nano-fluids and magnetic field of the peristaltic transport of a couple stress fluid in an asymmetric channel with different wave forms, Thermal Science, 24(2) (2020) Part B 1407-1422.

A. Rao, Ramachandra, Devanathan, Rathna; Pulsatile Flow in Tubes of Varying Cross-Sections, J Appl Math Phys (ZAMP), 24(1973) 203-2013.

Sisavathsourith, X. Jing, W. Robert, Zimmerman; Creeping flow through a pipe of varying Radius, Phys Fluid, 13(10) (2001) 2762-2772.