Green Synthesis and Characterization of Cerium Oxide Nanoparticles using Euphorbia hirta Leaf extract

Main Article Content

Anju Hariram Dhanetia
Alka Sharma
Shruti Sharma

Abstract

In the present era, synthesis of cerium oxide nanoparticles (CeO2NPs) employing natural resources as reducing and stabilizing agents has been widely used and advocated by the researchers because of their eco-friendly, simple, economical and viable features. Fabrication of non-toxic, cost-effective CeO2 NPs was carried out by eco-friendly approach using Euphorbia hirta leaf extract. The optical properties of green mediated cerium oxide nanoparticles revealed through UV-visible spectroscopy. The active biomolecules and the functional groups responsible for biological reduction of metal ions into nano-scale CeO2 particles were analysed using Fourier transform infrared spectroscopy (FTIR). The structure, phase and crystalline planes of nanoparticles were investigated using X-ray diffraction studies. The experimental results reveal that Euphorbia hirta leaf can be employed as an economical and beneficial potential bio-resource for the synthesis of metal oxide nanoparticles. These GNPs have potential applications in many fields, viz., medical, industrial, environmental, etc.

Article Details

How to Cite
1.
Anju Hariram Dhanetia, Alka Sharma, Shruti Sharma. Green Synthesis and Characterization of Cerium Oxide Nanoparticles using Euphorbia hirta Leaf extract. J. Int. Acad. Phys. Sci. [Internet]. 2021 Dec. 15 [cited 2024 May 17];25(4):579-90. Available from: https://www.iaps.org.in/journal/index.php/journaliaps/article/view/902
Section
Articles

References

J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne and M. K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J Nanotechnol, 9 (2018), 1050-1074.

H. Hou, G. Shao, W. Yang and Wai-Yeung Wong, One-dimensional, mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption, Prog mater Sci, 113 (2020) 100671. http://doi.org/10.1016/j.pmatsci. 2020.100671.

N. Baig, I. Kammakakam and W. Falath, Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges, Mater Adv, 2(6) (2021)1821-1871. http://doi.org/10.1039/D0MA00807A.

K. Banerjee and H. Madhyastha, Immunology and Nanotechnology: Effects and Affects. In: V. K. Arivarasan, K. Loganathan, P. Janarthanan(eds), Nanotechnology in the Life Science. Springer, 2021. http://doi.org/10.1007/978-3-030-61021-02.

Z. Shamasi, A. Es-haghi, M. F. Taghavizadeh Yazdi, M. S. Amiri and M. Homayouni-Tabrizi, Role of Rubia tinctorum in the synthesis of Zinc oxide nanoparticles and apoptosis induction in breast cancer cell line, Nanomed J, 8(1) (2021), 65-72. http://doi.org/10.22038/nmj.2021.08.07.

A. Muthuvel, M. Jothibas and C. Manoharan, Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity, Nanotechnol Environ Eng, 5(2) (2020). http://doi.org/10. 1007/s41204-020-00078-w.

S. Rajesh kumar and P. Naik, Synthesis and biomedical applications of Cerium oxide nanoparticles–A Review, Biotechnol Rep, 17 (2018) 1-5. http://doi.org/10.1016/ j.btre.2017.11.008.

G. Song, N. Cheng, J. Zhang, H. Huang, Y. Yuan, X. He, Y. Luo and K. Huang, Nanoscale Cerium Oxide: Synthesis, Biocatalytic, Mechanism and Applications, Catalysts, 11(9) (2021), 1-15. http://doi.org/10.3390/catal11091123.

F. Charbgoo, M. Ramezani and M. Darroudi, Bio-sensing Applications of Cerium Oxide Nanoparticles: Advantages and Disadvantages, Biosens & Bioelectron, 96 (2017), 33-43. http://doi.org/10.1016/j.bios.2017.04.037.

C. Walkey, S. Das and S. Seal, Catalytic properties and biomedical applications of cerium oxide nanoparticles, Environ Sci, 2(1) (2015), 33-53. http://doi.org/10.1039/ C4EN00138A.

Ayman A. Ali, Sahar R. EL-Sayed, Sayed A. Shama, Talaat Y. Mohamed and Alaa S. Amin, Fabrication and characterization of cerium oxide nanoparticles for the removal of naphthol green B dye, DesalinWater Treat, 204 (2020), 124-135. http://doi.org/10. 5004/dwt.202026245.

M. Shaterian, A. Rezvani and A.R. Abbasian, Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microsphere by solvothermal method, Mater Res Express, 6(12) (2020), 1250. http://doi.org/10.1088/2053-1591/ab65e0.

H. Balavi, S. Samadanian, M. Mehrabani-Zeinabad and M. Edrissi, Preparation and optimization of CeO2 nanoparticles and its application in photocatalytic degradation of Reactive Orange 16 dye, Powder Technol, 249 (2013), 549-555. http://doi.org/10. 1016/j.potec.2013.09.021.

M. Malamatari, A. Charisi, S. Malammataris, K. Kachrimanis and I. Nikolakais, Spray drying for the preparation of nanoparticles-based drug formulation as dry powders for inhalation, Processes, 8(7) 788 (2020), 1-27. http://doi.org/10.33390/ pr8070788.

S. Harini, A. Aswini, S. C. Kale, J. Narawane, J. Patel, S. Masurkar and S.s Ruikar, Microwave-assisted solvothermal Synthesis of Tungstan oxide Nanoparticles for microbial inhibition, Int J Curr Res Rev, 13(02) (2010), 76-69. http://doi.org/10/ 31782/ IJCRR.2021.13226.

D. B. Bharti and A. V. Bharati, Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity, Luminescence, 32(3) (2017), 317-320. http://doi.org/10.1002/bio.3180.

S. Tambat, S. Umale and S. Sontakke, Photocatalytic degradation of Milling Yellow dye using Sol-gel synthesized CeO2, Mater Res Bull.,76 (2016), 466-472. http://doi. morg /10.1016/J.MATERRESBULL.2016.01.010.

S. Pirtarighat, M. Ghannadnia and S. Baghshahi, Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment, J Nanostruct Chem, 9 (2019), 1-9. http://doi.org/10 .1007/s40097-018-0291-4.

G. A. Naikoo, M. Mustaqeem, I. U. Hassan,T. Awan, F. Arshad, H. Salim and A. Qurashi, Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review, J Saudi Chem Soc, 25(9) (2021), 101304. http://doi.org/10.1016/j.jscs.2021.101304.

Y. Kato and M. Suzuki, Synthesis of metal nanoparticles by Microorganisms, crystals, 10(7) (2020), 1-20. http://doi.org/10.3390/cryst10070589.

I. Ghiuta, C. Croitoru, J. Kost, R. Wenkert and D. Munteanu, Becteria mediated synthesis of silver and silver chloride nanoparticles and their antimicrobial activity, Appl Sci, 11(7) (2021), 3134. http://doi.org/10.3390/app11073134.

K. O Iwuozor, L. A. Ogunfowora and I. P. Oyekunle, Review on sugarcane-mediated nanoparticles synthesis: a green approach, Sugar Tech, (2021), 1-12. http://doi.org/10. 1007/s12355-021-01038-7.

D. Dutta, Mukherjee R, Patra M, et al. Green synthesized cerium oxide nanoparticle: a prospective drug against oxidative harm, Colloids Surf B Bio interfaces, 147 (2016), 45-53. http://doi.org/10.1016/j. colsurfb.2016.07.045.

A. Muthuvel, M. Jothibas, C. Manoharan and S. J. Jayakumar, Synthesis of CeO2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity, Res Chem Intermediat, 46(5) 2020. http://doi.org/10.1007/ s11164-020-04115w.

S. Sebastiammal, S. Sonia, J. Henry and A Lesly Fathima, Green synthesis of cerium oxide nanoparticles using Aloevera leaf extract and its optical properties, Songklanakarin J Sci Technol, 43(2) (2021), 582-587. http://doi.org/10.14456/sjst-psu.2021.78.

S. A. Nezhad, A. Es-haghi and M.H. Tabrizi, Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities, Appl Organomet Chem, 34(2) (2019), e5314. http://doi.org/10. 1002/aoc.5314.

A. Arumugam, C. Karthikeyan, A. S. Haja Hameed, K. Gopinath, S. Gowri and V. Karthika, Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties, Mater Sci Eng C, 49 (2015), 408-415. http://doi.org/10.1016/j. msec.2015.01.042.

T. V. Surendra and S. M. Roopan, Photocatalytic and antibacterial properties of Phyto synthesized of CeO2 NPs using Moringa oleifera peel extract. J Photochem Photobiol B. 61 (2016), 122-128. http://doi.org/10.1016/j.jphotobiol.2016.05. 019.

N. Thovhogi, A. Diallo and Gurib-Fakim A, Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: main physical properties. J Alloys Compd, 647 (2015), 392-396. http://doi.org/10.1016/j. jallcom.2015.06.076.

T. Arunachalam, M. Karpagasundaram and N. Rajarathinam, Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties. Mater Sci Poland, 35(4) (2017), 791-798. http://doi.org/10.1515/msp-2017-0104.

J. K. Sharma, P. Srivastava, S. Ameen, M. S. Akhtar, S. K. Sengupta and G. Singh, Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation, Mater Res Bull, 91 (2017), 98-107. http://doi. org/10.1016/j.materresbull.2017.03.034.

R. Magudiehwaran, J. Ishii, KCN Raja and C. Terashima, Green Chemical Synthesized CeO2 Nanoparticles for Photocatalytic Indoor Air Pollutant Degradation, Mater Lett, 239 (2018), 40-44. http://doi.org/10.1016/j.matlet.2018.11.172.

A. Muthuvel, M. Jothibas, V. Mohana, C. Manoharan, Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity, Inorg Chem Commun, (2020), 1-19. http://doi.org/10.1016/j.inoche.2020.108086.

S. Kumar, R. Malhotra and D. Kumar, Euphorbia hirta: Its Chemistry, Traditional and Medicinal Uses, and Pharmacological Activities, Pharmacogn Rev, 4 (2010), 58-61. http://doi.org/10.4103/09737847.65327.

S. Asha, P. Thirunavukkarasu and S. A. Mohamad, Phytochemical Screening of Euphorbia hirta Linn Leaf Extracts, World J Pharm Sci, 3(6) (2015), 1104-1112.

S. D. Perera, U. A. Jayawardena and C. D. Jayasinghe, Potential Use of Euphorbia hirta for Dengue: A Systematic Review of Scientific Evidence, J Trop Med, (2018), 2048530. http://doi.org/10. 1155/2018/2048530.

W. Ahmad, S. Singh and S. Kumar, Phytochemical Screening and Antimicrobial Study of Euphorbia hirta Extracts, J Med Plants Stud, 5 (2017), 183-186.

Guddi Choudhary, Arpita Sharma, Monika, Rakesh K. Bangar and Alka Sharma, Eco-friendly inhibition by weed (Bidens biternata) Extract towards acid corrosion of AA6063, Int J Innov Res Sci Adv Eng, 2(12) (2015), 112-119.

Monika, Guddi Choudhary, Anju and Alka Sharma, Impeding Acid Corrosion of Mild Steel Using Green Inhibitors, Int J Innov Res Sci Adv Eng, 5(12) (2016), 21064-21073.

K. Choudhary, Arpita Sharma, Monika, Anju and Alka Sharma, Quantum Chemical and Adsorptive Studies of Mild Steel in HydrochloricAcid, Int J Res Appl Sci Eng Technol, 6(XII) (2018), 843-853.

Monika, Anju and Alka Sharma, Anti-corrosive propensity of Alstonia boonei towards copper in 0.5 M HCl, Int J Sci Res, 6(12) (2017), 1952-1958.

Q. Maqbool, M. Nazar, S. Naz, T. Hussain, N. Jabeen, R. Kausar, S. Anwaar, F. Abbas and T. Jan, Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract, Int J Nanomedicine, 11 (2016), 5015-5025. http://doi.org/10.2147/IJN. S113508.

A. Miri, M. Darruodi and M. Sarani, Biosynthesis of cerium oxide nanoparticles and its cytotoxicity survey against colon cancer cell line, Appl Organometal Chem, (2019), 1-7. http://doi.org/10.1002/aoc.5308.