Cerium Based Uio-66 Chemiresistor for the Detection of Carbon Dioxide

Main Article Content

Marilyn Esclance DMello
Suresh Babu Kalidindi

Abstract

Metal-Organic Frameworks are a versatile class of hybrid materials that can offer tantalizing opportunities to tune its structure, chemical composition suitable for gas sensing application. CO2 - a major greenhouse gas emission is challenging due to its low reactivity. Hence, sensors with more adsorption/ reactive sites and CO2 activating sites are needed to develop effective CO2 sensors. Chemiresistive sensors that are based on change in electrical properties (resistance/ conductance) offer simpler instrumentation and are cost effective over other sensing technologies. The surge to develop effective CO2 sensors have allowed us to demonstrate a simple chemiresistor- UiO-66 (Ce). UiO-66 (Ce) was synthesized and characterized by powder X-ray diffraction, scanning electron microscopy and nitrogen sorption studies. The UiO-66 (Ce) showed a very high response of 88 % at 150 °C. By combining the well-known features of redox active Ce with UiO-66 based MOF, we have converted an innocent MOF into an effective chemiresistive CO2 sensor. The gas sensing characteristics can be attributed to a greater number of active sites for CO2 sensing on replacement of Zr with Ce in the nodes of UiO-66.

Article Details

How to Cite
1.
Marilyn Esclance DMello, Suresh Babu Kalidindi. Cerium Based Uio-66 Chemiresistor for the Detection of Carbon Dioxide. J. Int. Acad. Phys. Sci. [Internet]. 2021 Dec. 15 [cited 2024 May 19];25(4):567-7. Available from: https://www.iaps.org.in/journal/index.php/journaliaps/article/view/901
Section
Articles

References

P. Kumar, K. Vellingiri, K. H. Kim, R. J. C. Brown and M. J. Manos, Microporous and Mesoporous Mater., 253 (2017), 251-265.

C. H. Hendon, A. J. Rieth, M. D. Korzyński and M. Dincǎ, ACS Cent. Sci., 3 (2017), 554-563.

H. Furukawa, H. Furukawa, K. E. Cordova, M. O. Keeffe and O. M. Yaghi, Science, 341 (2013), 1230444.

J. R. Li, R. J. Kuppler and H. C. Zhou, Chem. Soc. Rev., 38 (2009), 1477.

H. Y. Li, S. N. Zhao, S. Q. Zang and J. Li, Chem. Soc. Rev., 49 (2020), 6364-6401.

H. Li, K. Wang, Y. Sun, C. T. Lollar, J. Li and H. C. Zhou, Mater. Today, 21 (2018), 108-121.

V. R. Bakuru, M. E. DMello and S. B. Kalidindi, ChemPhysChem, 20 (2019), 1177-1215.

W. T. Koo, J. S. Jang and I. D. Kim, Chem, 5 (2019), 1938-1963.

K. Jayaramulu, M. Esclance Dmello, K. Kesavan, A. Schneemann, M. Otyepka, S. Kment, C. Narayana, S. B. Kalidindi, R. S. Varma, R. Zboril and R. A. Fischer, J. Mater. Chem. A, 9 (2021), 17434-17441.

M. E. DMello, N. G. Sundaram and S. B. Kalidindi, Chem. Eur. J., 24 (2018), 9220-9223.

E. Chen, H. Yang and J. Zhang, Inorg. Chem., (2014), 5411-5413.

E. Chen, H. Fu, R. Lin, Y. Tan and J. Zhang, ACS Appl. Mater. Interfaces, 6 (2014), 22871-22875.

Y. Jian, W. Hu, Z. Zhao, P. Cheng, H. Haick, M. Yao and W. Wu, Nano-Micro Lett., 12 (2020), 43.

N. Stock and S. Biswas, Chem. Rev., 112 (2012), 933-969.

F. Y. Yi, D. Chen, M. K. Wu, L. Han and H. L. Jiang, ChemPlusChem, 81 (2016), 675-690.

Z. Yunusa, M. N. Hamidon and A. Kaiser, Sens. Transducers, 168 (2014), 61-75.

B. Li, Q. Zhou, S. Peng and Y. Liao, Front. Chem., 8 (2020), 1-6.

C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sens. Actuators B Chem., 3 (1991), 147-155.

S. Phanichphant, Procedia Eng., 87 (2014), 795-802.

Z. Chen, M. C. Wasson, R. J. Drout, L. Robison, K. B. Idrees, J. G. Knapp, F. A. Son, X. Zhang, W. Hierse, C. Kühn, S. Marx, B. Hernandez and O. K. Farha, Faraday Discuss., 225 (2021), 9-69.

Z. Chen, S. L. Hanna, L. R. Redfern, D. Alezi, T. Islamoglu and O. K. Farha, Coord. Chem. Rev., 386 (2019), 32-49.

S. Waitschat, D. Fröhlich, H. Reinsch, H. Terraschke, K. A. Lomachenko, C. Lamberti, H. Kummer, T. Helling, M. Baumgartner, S. Henninger and N. Stock, Dalton Trans., 47 (2018), 1062-1070.

G. E. Cmarik, M. Kim, S. M. Cohen and K. S. Walton, Langmuir, 28 (2012), 15606-15613.

J. Jacobsen, A. Ienco, R. D’Amato, F. Costantino and N. Stock, Dalton Trans., 49 (2020), 16551-16586.

M. Ronda-Lloret, I. Pellicer-Carreño, A. Grau-Atienza, R. Boada, S. Diaz-Moreno, J. Narciso-Romero, J. C. Serrano-Ruiz, A. Sepúlveda-Escribano and E. V. Ramos-Fernandez, Adv. Funct. Mater., 31 (2021), 1-7.

M. Melchionna and P. Fornasiero, Mater. Today, 17 (2014), 349-357.

K. Chang, H. Zhang, M. J. Cheng and Q. Lu, ACS Catalysis, 10 (2020), 613-631.

M. Stawowy, M. Róziewicz, E. Szczepańska, J. Silvestre-Albero, M. Zawadzki, M. Musioł, R. Łuzny, J. Kaczmarczyk, J. Trawczyński and A. Łamacz, Catalysts, 9 (2019), 309.

and N. S. Martin Lammert, Michael T. Wharmby, Simon Smolders, Bart Bueken, Alexandra Lieb, Kirill A. Lomachenko, Dirk De Vos, Chem. Commun., 51 (2015), 12578-12581.

M. E. DMello, N. G. Sundaram, A. Singh, A. K. Singh and S. B. Kalidindi, Chem. Commun., 55 (2019), 349-352.

S. Das and V. Jayaraman, Prog. Mater. Sci., 66 (2014), 112-255.

M. Y. Kim, Y. N. Choi, J. M. Bae and T. S. Oh, Ceram. Int., 38 (2012), 657-660.

U. Hoefer, G. Kühner, W. Schweizer, G. Sulz and K. Steiner, Sens. Actuators B Chem., 22 (1994), 115-119.

I. Karaduman, M. Demir, D. E. Yildiz and S. Acar, Physica Scripta, 90 (2015), 55802.

D. H. Kim, J. Y. Yoon, H. C. Park and K. H. Kim, Sens. Actuators B Chem., 62 (2000), 61-66.

N. Mizuno, T. Yoshioka, K. Kato and M. Iwamoto, Sens. Actuators B Chem., 13 (1993), 473-475.

J. Tamaki, M. Akiyama, C. Xu, N. Miura and N. Yamazoe, Chem. Lett., 19 (1990), 1243-1246.

F. C. Bancolo, G. N. C. Santos and R. V Quiroga, Int. j. sci. eng., 3 (2012), 1-6.

S. A. Waghuley, Indian J. Pure Appl. Phys., 49 (2011), 816-819.

H. Abderrahim, M. Berrebia, A. Hamou, H. Kherief, Y. Zanoun and K. Zenata, J. Mater. Environ. Sci., 2 (2011), 94-103.

S. Smolders, K. A. Lomachenko, B. Bueken, A. Struyf, A. L. Bugaev, C. Atzori, N. Stock, C. Lamberti, M. B. J. Roeffaers and D. E. De Vos, Chem Phys Chem, 19 (2018), 373-378.

F. Nouar, M. I. Breeze, B. C. Campo, A. Vimont, G. Clet, M. Daturi, T. Devic, R. I. Walton and C. Serre, Chem. Commun., 51 (2015), 14458-14461.