Nematic Liquid Crystals Dispersed with Multiwalled Carbon Nanotubes: A Perspective Way for Improving the Response Time and Birefringence of Electro-Optical Devices

Main Article Content

Bhupendra Pratap Singh
Rajiv Manohar

Abstract

This study investigated dielectric and electro-optical performance of nematic liquid crystal (LC) dispersed with carboxylic acid functionalized carbon nanotubes (fCNT). The investigation reveals the LC-fCNT composite systems exhibits nearly 60% faster response time as compare to pure LC. The composite system also revealed a reduced rotational viscosity and an enhanced dielectric anisotropy by the ion trapping mechanism at the adsorbing cites of carbon. Dielectric spectra of vertically aligned (VA) LC cells explained a remarkable reduction in relaxation time (about short molecular axis) hence rotational viscosity of LC-fCNT composite systems. The results suggest a specific concentration of fCNT doping in LC decrease the rotational viscosity and hence accelerated the electro-optical response and also does not affect the nematic director called threshold limit of concentration (in our case up to 0.05 wt%). The measurement also confirms that the significant enhancement in nematic-isotropic phase transition temperature (TNI). Consequently, birefringence also enhanced the anchoring energy due to p-p electron stacking between LC and fCNT enhanced the order parameter of LC-fCNT composite systems. These results successfully demostrate the dielectric and electro-optical operations of LC-fCNT composite systems.

Article Details

How to Cite
1.
Bhupendra Pratap Singh, Rajiv Manohar. Nematic Liquid Crystals Dispersed with Multiwalled Carbon Nanotubes: A Perspective Way for Improving the Response Time and Birefringence of Electro-Optical Devices. J. Int. Acad. Phys. Sci. [Internet]. 2021 Dec. 15 [cited 2024 May 18];25(4):517-38. Available from: https://www.iaps.org.in/journal/index.php/journaliaps/article/view/898
Section
Articles

References

1. K. Jain, M. Klosner, M. Zemel and S. Raghunandan, Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production. Proceedings of the IEEE, 93(8) (2005), 1500-1510.

C. J. Hsu, B. P. Singh, M. Antony, P. Selvaraj, R. Manohar and C. Y. Huang, Liquid crystal lens with doping of rutile titanium dioxide nanoparticles, Optics Express 28(15) (2020), 22856- 22866.

L. Driencourt, F. Federspiel, D. Kazazis, L. T. Tseng, R. Frantz, Y. Ekinci, R. Ferrini and B. Gallinet, Electrically Tunable Multicolored Filter Using Birefringent Plasmonic Resonators and Liquid Crystals, ACS Photonics, 7(2) (2020), 444-453.

Y. Zhang, X. Yang, Y. Zhan, J. He, P. Lv, D. Yuan, X. Hu, D. Liu, D. J. Broer, G. Zhou and W. Zhao, Electroconvection in Zwitterion-Doped Nematic Liquid Crysta- ls and Application as Smart Windows, Advanced Optical Materials, 9(3) (2021), 2001465.

Z. Wang, T. Xu, A. Noel, Y. C. Chen and T. Liu, Applications of liquid crystals in biosensing, Soft Matter, 17(18), (2021), 4675-4702.

C. G. Christodoulou, Y. Tawk, S. A. Lane and S. R. Erwin, Reconfigurable Antennas for Wireless and Space Applications, Proceedings of the IEEE, 100(7) (2012), 2250-2261.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan and N. L. Abbott, Chemical and biological sensing using liquid crystals, Liquid crystals r- views, 1(1) (2013), 29-51.

R. Basu and G. S.Iannacchione, Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal, Phys Rev E Stat Nonlin Soft Matter Phys, 81(2010), 051705.

R. Basu and G. S. Iannacchione, Nematic anchoring on carbon nanotubes, Applied Physics Letters, 95(17) (2009), 173113.

M. Rahman and W. Lee, Scientific duo of carbon nanotubes and nematic liquid crystals, Journal of Physics D: Applied Physics, 42(6) (2009), 063001.

F. Moghadas, J. B. Poursamad, M. Sahrai and M. Emdadi, Flexoelectric coefficients enhancement via doping carbon nanotubes in nematic liquid crystal host, Eur Phys J E Soft Matter, 42(8) (2019), 103.

D. A. Petrov, P. K. Skokov, A. N. Zakhlevnykh and D. V. Makarov, Magnetic segregation effect in liquid crystals doped with carbon nanotubes, Beilstein Journal of Nanotechnology, 10 (2019), 1464-1474.

Y. Garbovskiy, Conventional and unconventional ionic phenomena in tunable soft materials made of liquid crystals and nanoparticles, Nano Express, 2(1) (2021), 012004.

G. V. Varshini, D. S. Shankar Rao, P. K. Mukherjee and S. Krishna Prasad, Nanophase Segregation of Nanostructures: Induction of Smectic A and Re-Entrance in a Carbon Nanotube/Nematic Liquid Crystal Composite, J Phys Chem B , 122(47) (2018), 10774- 10781.

L. Dolgov, O. Yaroshchuk and M. Lebovka, Effect of Electro-Optical Memory in Liquid Crystals Doped with Carbon Nanotubes, Molecular Crystals and Liquid Crystals, 496(1) (2008), 212-229.

D. A. Petrov, P. K. Skokov and A. N. Zakhlevnykh, Magnetic field induced orientational transitions in liquid crystals doped with carbon nanotubes, Beilstein Journal of Nanotechnology, 8 (2017), 2807-2817.

H. Y. Chen and W. Lee, Suppression of field screening in nematic liquid crystals by carbon nanotubes, Applied Physics Letters, 88(22) (2006), 222105.

X. X. Qiao, X. J. Zhang, Y. B. Guo, S. K. Yang, Y. Tian and Y. G. Meng, Boundary layer viscosity of CNT-doped liquid crystals: effects of phase behavior, Rheol. Acta, 52(10-12) (2013), 939- 947.

S. K. Gupta, A. Kumar, A. K. Srivastava and R. Manohar, Modification in dielectric properties of SWCNT doped ferroelectric liquid crystals, Journal of Non-Crystalline Solids, 357(7) (2011), 1822-1826.

P. Malik, A. Chaudhary, R. Mehra and K. K. Raina, Electro-optic, thermo-optic and dielectric responses of multiwalled carbon nanotube doped ferroelectric liquid crystal thin films, Journal of Molecular Liquids, 165 (2012), 7-11.

R. Basu, Effect of carbon nanotubes on the field-induced nematic switching, Applied Physics Letters, 103(24) (2013), 241906.

R. Basu, R. G. Petschek and C. Rosenblatt, Nematic electroclinic effect in a carbon-nanotube-doped achiral liquid crystal, Phys Rev E Stat Nonlin Soft Matter Phys, 83 (2011), 041707.

R. Basu and G. S. Iannacchione,, Dielectric response of multiwalled carbon nanotubes as a function of applied ac-electric fields, Journal of Applied Physics, 104(11) (2008), 114107.

B. P. Singh, S. Sikarwar, K. Agrahari, S. Tripathi, R. K. Gangwar, R. Manohar and K. K. Pandey, Electro-optical characterization of a weakly polar liquid crystalline co- mpound influenced polyvinyl pyrrolidone capped gold nanoparticles, Journal of M- olecular Liquids, 325 (2021), 115172.

B. P. Singh, C. Y. Huang, D. P. Singh, P. Palani, B. Duponchel, M. Sah, R. Manohar and K. K. Pandey, The scientific duo of TiO2 nanoparticles and nematic liquid crystal E204: Increased absorbance, photoluminescence quenching and improving response time for electro-optical devices, Journal of Molecular Liquids, 325 (2021), 115130.

V. K. Arora and A. Bhattacharyya, Cohesive band structure of carbon nanotubes for applications in quantum transport, Nanoscale, 5(22) (2013), 10927-10935.

G. Baur, V. Wittwer and D. Berreman, Determination of the tilt angles at surfaces of substrates in liquid crystal cells, Phys. Lett. A, 56(2) (1976), 142-144.

Nastishin, Y. A.; Polak, R.; Shiyanovskii, S. V.; Bodnar, V.; Lavrentovich, O., Nematic polar anchoring strength measured by electric field techniques. J. Appl. Phys. 1999, 86 (8), 4199- 4213.

B. P. Singh, G. Pathak, A. Roy, G. Hegde, P. K. Tripathi, A. Srivastava and R. Manohar, Investigation of dielectric and electro-optical properties of nematic liquid crystal with the suspension of biowaste-based porous carbon nanoparticles, Liquid Crystals, 46(12) (2019), 1808-1820.

J. P. F. Lagerwall and G. Scalia, Carbon nanotubes in liquid crystals, Journal of Materials Chemistry, 18(25) (2008), 2890-2898.

C. Chang, Liquid crystallinity of carbon nanotubes, RSC advances, 8(28) (2018), 15780-15795.

T. Vimal, D. P. Singh, S. K. Gupta, S. Pandey, K. Agrahari and R. Manohar, Thermal and optical study of semiconducting CNTs-doped nematic liquid crystalline material, Phase Transitions, 89(6) (2016), 632-642.

K. K. Raina, P. Kumar and P. Malik, Morphological control and polarization switching in polymer dispersed liquid crystal materials and devices, Bulletin of Materials Science, 29(6) (2006), 599-603.

S. Uemura, Ionic contribution to the complex dielectric constant of a polymer under dc bias, Journal of Polymer Science: Polymer Physics Edition, 10(11) (1972), 2155-2166.

S. Uemura, Low‐frequency dielectric behavior of poly (vinylidene fluoride), Journal of Polymer Science: Polymer Physics Edition , 12(6) (1974), 1177-1188.

S. P. Yadav, R. Manohar and S. Singh, Effect of TiO2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal, Liquid Crystals, 42(8) (2015), 1095-1101.

H. K. Shin, J.H. Seo, T. H. Yoon, J. C. Kim, H. S. Woo and S. T. Shin, Effects of pentacene on the properties of negative anisotropy nematic liquid crystal in vertical alignment cell, Japanese Journal of Applied Physics, 48(11R) (2009), 111502.

W. Haase and S. Wróbel, In Relaxation phenomena : liquid crystals, magnetic systems, polymers, high-Tc superconductors, metallic glasses, 2003.

S. W. Liao, C. T. Hsieh, C. C. Kuo and C. Y. Huang, Voltage-assisted ion reduction in liquid crystal-silica nanoparticle dispersions, Applied Physics Letters, 101(16) (2012), 161906.

P. Perkowski, Dielectric spectroscopy of liquid crystals, Theoretical model of ITO electrodes influence on dielectric measurements, Opto-Electronics Review, 17(2) (2009), 180-186.

P. Perkowski, Dielectric spectroscopy of liquid crystals, Electrodes resistivity and connecting wires inductance influence on dielectric measurements, Opto-Electronics Review, 20(1) (2012), 79-86.

M. Schadt, Liquid crystal materials and liquid crystal displays, Annual review of materials science, 27(1) (1997), 305-379.

Z. Chen, L. Jiang and H. Ma, Calculation on frequency and temperature properties of birefringence of nematic liquid crystal 5CB in terahertz band, Chem. Phys. Lett., 645 (2016), 205-209.

S. T. Wu, and D. K. Yang, Fundamentals of Liquid Crystal Devices, 1st ed., John Wiley & Sons, Ltd., 2006.

A. Prasad, M. K. Das, Optical birefringence studies of a binary mixture with the nematic–smectic Ad-re-entrant nematic phase sequence, Journal of Physics: Condensed Matter, 22(19) (2010), 195106.

N. Pushpavathi, K. L. Sandhya and S. K. Prasad, Effect of graphene flakes, titanium dioxide and zinc oxide nanoparticles on the birefringence, I-V characteristics and photoluminescence properties of liquid crystal, Journal of Molecular Liquids, 302 (2020), 112571.

N. Pushpavathi, K. L. Sandhya and R. Pratibha, Photoluminescence and electrical conductivity measurement of liquid crystal doped with ZnO nanoparticles, Liquid Crystals, 46(5) (2019), 666-673.

R. J. A. Tough and M. J. Bradshaw, The determination of the order parameters of nematic liquid crystals by mean field extrapolation, J. Phys. France, 44(3) (1983), 447-454.

T. Scharf, Polarized light in liquid crystals and polymers, John Wiley & Sons, 2007.

H. Ozbek, S. Ustunel, E. Kutlu and M. C. Cetinkaya, A simple method to determine high-accuracy refractive indices of liquid crystals and the temperature behavior of the related optical parameters via high-resolution birefringence data, Journal of Molecular Liquids, 199 (2014), 275-286.

J. Li, S. T. Wu, S. Brugioni, R. Meucci and S. Faetti, Infrared refractive indices of liquid crystals, Journal of Applied Physics, 97(7) (2005), 073501.

P. Selvaraj, K. Subramani, B. Srinivasan, C. J. Hsu and C. Y. Huang, Electro-optical effects of organic N-benzyl-2-methyl-4-nitroaniline dispersion in nematic liquid crystals, Scientific Reports, 10(1) (2020), 14273.

H. Duran, B. Gazdecki, A. Yamashita and T. Kyu, Effect of carbon nanotubes on phase transitions of nematic liquid crystals, Liquid Crystals, 32(7) (2005), 815-821.

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko and J. West, Ferroelectric nematic suspension, Applied Physics Letters, 82 (12) (2003), 1917-1919.

M. Mrukiewicz, K. Kowiorski, P. Perkowski, R. Mazur and M. Djas, Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes, Beilstein J. Nanotechnol, 10(1) (2019), 71-78.