Structural and electrical characteristics of La3+ and Ti4+ co-doped BiFeO3

Main Article Content

Sushil Joshi
Alok Shukla

Abstract

Ceramic materials are widely used as base material for composite film and high frequency resistor because of their better insulating behavior. So, a good and careful study of dielectric and conductivity parameters are required for ceramic material. Polycrystalline ceramic (Bi0.9La0.1)(Fe0.5Ti0.5)O3 (referred as BLaFTO-10 in this communication) was successfully synthesized by traditional solid state reaction method. Structural analysis done with XRD characterization, which confirms the single-phase formation of the compound at room temperature. Scanning electron microscopy is used to examine the morphological study which confirms the polycrystalline nature of the sample. EDX study confirms the formation of compound and presence of all element in the as prepared sample. In this paper focus is made on the study of dielectric measurement, conductivity and impedance analysis in a wide range of frequency (1 kHz to 1 MHz) and temperature (250C – 5000C). Ac conductivity follows the universal Jonscher’s power law. Dielectric spectrum reveals the high values of dielectric permittivity and low value of tangent loss. These interesting features could be utilized for electronic applications.

Article Details

How to Cite
1.
Sushil Joshi, Alok Shukla. Structural and electrical characteristics of La3+ and Ti4+ co-doped BiFeO3. J. Int. Acad. Phys. Sci. [Internet]. 2022 Dec. 15 [cited 2024 May 7];26(4):443-56. Available from: https://www.iaps.org.in/journal/index.php/journaliaps/article/view/867
Section
Articles

References

S. J. Clark, J. Robertson, Band gap of Schottky barrier hights of multiferroic BiFeO3 thin films, Appl. Phys. Lett., 80 (2002), 1628.

V.R. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films, Appl. Phys. Lett. 80 (2002), 1628.

Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84 (2004), 1731-1733.

R. Kumar, T.K. Sharma, P.K. Gupta, J. Raman Spectrosc 46 (2015), 636-643.

N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R. N. P. Choudhary, Structural, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3, Journal of Materials Science: Materials in Electronics, 30 (2019), 1919-1926.

N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R. N. P. Choudhary, Structural, Electrical and Ferroelectric Characteristics of Bi(Fe0.9La 0.1)O3, Ceramics International, 44-17 (2018), 21330-21337.

J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhi, Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics, Appl. Phys. Lett. 96 (2010), 102509.

Y. Wang, C.-W. Nana, Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films, Appl. Phys. Lett. 89 (2006), 052903.

Z. Wen, G. Hu, S. Fan, C. Yang, W. Wu, Y. Zhou, X. Chen, S. Cui, Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO3 films. Thin Solid Films 517 (2009), 4497–4501.

V.R. Palkar, D. C. Kundaliya, S. K. Malik, S. Bhattacharya, Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system, Phys Rev B 69 (2004), 212102-212105.

Q. Xu, H. Zai, D. Wu, Y. K. Tanga, M. X. Xu, The magnetic properties of BiFeO3 and Bi(Fe0.95Zn0.05)O3, J Alloys Compd 485 (2009), 13-16.

Z. X. Cheng,A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura, S. J. Zhang, T. R. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite, J Appl Phys 103-7 (2008), 07E507-07E507-3.

A. Ghosh, D. P. Trujillo, H. Choi, S. M. Nakhmanson, S. P. Alpay, J. X. Zhu, Electronic and Magnetic Properties of Lanthanum and Strontium Doped Bismuth Ferrite: A First- Principle Study, Sci Rep. 17; 9-1 (2019), 194.

I. Ahmed, G. Mustafa, M. U. Subhani, G. Hussain, A. G. Ismail, H. Anwar, A detailed investigation of lanthanum substituted bismuth ferrite for enhanced structural, optical, dielectric, magnetic and ferroelectric properties, Results in Physics, 38 (2022), 105584.

E. W. POWD, An Interactive Powder diffraction Data Interpretation and Indexing Program, Ver. 2.1, School of Physical Science, Finders University of South Australia, Bedford Park, S.A. 5042, Australia.

F. Calderon-Pinar, O. Gercia-Zaldivar, Y. Gonzalez-Abreu, Relaxor behaviour in ferroelectric ceramic, Adv. Ferroelectr, (2012).

B. R. Shaikh, B. G. Toksha, S. E. Shirsath, A. Chatterjee, S. Tonde, S. Q. Chishty, Microstructure, magnetic and dielectric interplay in NiCuZn ferrite with rare earth doping for magneto-dielectric applications, J. Magn. Magn. Mater, 537 (2021), 168229.

E. M. Anton. W. Jo, D. Damjanovic, J. Rodel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics, J. Appl. Phys., 110 (2014), 094108/1-14.

J. R. MacDonald, Impedance Spectroscopy, Wiley, New York, 1987.

R.K. Mishra, R. N. P. Choudhary, Awalendra K. Thakur, Preparation and analysis of single-phase Pb(Mn1/2Nb1/2)O3, J. Alloy Comp., 457 (2008), 490-497.

Neeha pradhani, P. K. Mahapatra, R. N. P. Choudhary, Effect of cerium oxide addition on optical, electrical and dielectric characteristics of (Bi0.5Na0.5)TiO3 ceramics, J. Phys. Materials, 1 (2018), 015007.

N. Masta, D. Triyono, H. Laysandra, Electrical properties Sr2FeTiO6 double pervoksite material synthesized by sol-gel method, AIP Conf. Proc, 1862 (2017), 030036.

D. K. Mohato, A. Dutta, T. P. Sinha, Impedance spectroscopy analysis of double pervoksite Ho2NiTiO6, J. Mater. Sci., 45 (2010), 6757.

I. M. Hodge, M. D. Ingram, A. R. West, A new method for analysing the a.c. behaviour of polycrystalline solid electrolytes, J. Electroanel. Chem. Interfacial Electrochem, 58 (1975), 429-432.

Jianjun Liu, Chun-Gang Duan, Wel-Guo Yin, Wai-Ning Mei, Robert W. Smith, John R. Hardy, Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12, Phys. Rev., B 70 (2004), 144106.

T. Sarkar, B. Ghosh, A. K. Raychaudhari, T. Chatterji, Crystal structure and physical properties of half-doped manganite nanocrystals of less than 100-nm size, Phys. Rev. B, 67 (2008), 235112.

R.I. Das, J. B. Goodenough, Multiple magnetic phases of La2CoMnO6-δ(0%3c δ%3c 0.05), Phys. Rev. B, 67 (2003), 014401.

J.R. Macdonald, Note on parametrization of the constant phase admittance element, Solid State Ion., 13 (1984), 147.

M. Kumar, S. Shankar, O. Prakash, O.P. Thakur, Dielectric and multiferroic properties of 0.75BiFeO3–0.25BaTiO3 solid solution, J. Mater, Scii. Mater. Electron, 25-2 (2013), 673.

Most read articles by the same author(s)