Exponentially-fitted Runge-Kutta Method for Volterra Integro-Differential Equations

Main Article Content

Pooran Lal Prajapati
Ram Kishor Pandey
Punam Gupta

Abstract

The present paper is intended to construct the exponentially fitted Runge-Kutta method to solve Volterra integro-differential equation (VIDE). Here, VIDE is first converted into its equivalent integro-differential operator form and assumes that these operators annihilate the pre-assigned set functions with unknown frequencies and . The optimum values of these frequencies and are calculated by minimizing the truncation error. To show the utility of the proposed development, these schemes are tested on two examples of VIDE having exponential solution. The comparison of the numerical results with the analytical/exact solution and the best-reported results in literature confirms the high accuracy and applicability of the proposed method to the VIDE.

Article Details

How to Cite
1.
Pooran Lal Prajapati, Pandey RK, Gupta P. Exponentially-fitted Runge-Kutta Method for Volterra Integro-Differential Equations. J. Int. Acad. Phys. Sci. [Internet]. 2024 Jun. 15 [cited 2025 May 17];28(2):157-68. Available from: https://www.iaps.org.in/journal/index.php/journaliaps/article/view/866
Section
Articles

References

H. Wang, H.M. Fu, H.F. Zhang; A practical thermodynamic method to calculate the best glass-forming composition for bulk metallic glasses, Int. J. Nonlinear Sci. Numer. Simul., 8(2) (2007), 171-178.

L. Xu, J.H. He, Y. Liu; Electrospun nanoporous spheres with Chinese drug, Int. J. Nonlinear Sci. Numer. Simul., 8(2) (2007), 199-202.

F.Z. Sun, M. Gao, S.H. Lei; The fractal dimension of the fractal model of dropwise condensation and its experimental study, Int. J. Nonlinear Sci. Numer. Simul., 8(2) (2007) 211-222.

N. Bellomo, B. Firmani, L. Guerri; Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor immune cells competition, Appl. Math. Lett., 12 (1999), 39-44.

A.M. Wazwaz; The existence of noise terms for systems of inhomogeneous differential and integral equations, Appl. Math. Comput., 146 (2003), 81-92.

T.L. Bo, L. Xie, X.L. Zheng; Numerical approach to wind ripple in the desert, Int. J. Nonlinear Sci. Numer. Simul., 8(2) (2007), 223-228.

S.M. El-Sayed, D. Kaya, S. Zarea; The decomposition method applied to solve high order linear Volterra-Fredholm integro-differential equations, Int. J. Nonlinear Sci. Numer. Simul., 5(2) (2004), 105-112.

M.I. Berenguer, A.I. Garralda-Guillem, M.R. Galán; An approximation method for solving systems of Volterra integro-differential equations, Appl. Numer. Math., 67 (2013), 126-135.

K. Maleknejad, F. Mirzaee, S. Abbasbandy; Solving linear integro-differential equations system by using rationalized Haar functions method, Appl. Math. Comput., 155 (2004), 317-328.

H. H. Sorkun, S. Yalinbas; Approximate solutions of linear Volterra integral equation systems with variable coefficients, Appl. Math. Modell., 34 (2010), 3451-3464.

K. Maleknejad, M.T. Kajani; Solving linear integro-differential equation system by Galerkin methods with hybrid functions, Appl. Math. Comput., 159 (2004), 603-612.

N. Sahin, S. Yuzbasi, M. Gulsu; A collocation approach for solving systems of linear Volterra integral equations with variable coefficients, Appl. Math. Comput., 62 (2011), 755-769.

C.T.H. Baker, A. Tang; Stability analysis of continuous implicit Runge-Kutta methods for Volterra integro-differential systems with unbounded delays, Appl. Numer. Math., 24 (1997), 153-173.

M. Ganesh, I.H. Sloan; Optimal order spline methods for nonlinear differential and integro-differential equations, Appl. Numer. Math., 29 (1999), 445-478.

T. Jangveladze, Z. Kiguradze, B. Neta; Finite difference approximation of a nonlinear integro-differential system, Appl. Math. Comput., 215 (2009), 615-628.

K.E. Atkinson; The Numerical Solution of Integral equation of Second Kind (Handbook), Cambridge University Press, Cambridge, UK, 1997.

B. Paternoster; Runge-Kutta(-Nystrom) methods for ODEs with pe-riodic solutions based on trigonometric polynomials, Appl. Numer. Math., 28 (1998), 401-412.

T. E. Simos; An exponentially-fitted Runge-Kutta methodfor the numerical integration of initial-value problems with peri-odic or oscillating solutions, Comput. Phys. Commun., 115 (1998), 1-8.

G. V. Berghe, H. De Meyer, M. Van Daele, and T. Van Hecke; Exponentially-fitted explicit Runge-Kutta methods, Comput. Phys. Comm., 123 (1999), 7-15.

G. V. Berghe, H. De Meyer, M. Van Daele and T. Van Hecke; Exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 125 (2000), 107-115.

Shruti Tiwari, Ram K. Pandey; Exponentially fitted pseudo-Runge-Kutta method, International Journal of Computing Science and Mathematics, 12(2) (2020), 105-116.

Shruti Tiwari, Ram K. Pandey; Revised version of exponentially fitted pseudo-Runge-Kutta Method, International Journal of Computing Science and Mathematics, 13(2) (2021), 116-125.

R.Vermiglio; Natural continuous extension of Runge-Kutta methods for Volterra integro-differential equations, Numer. Math., 53 (1988), 439-450.

H. Brunner; Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, New York, 2004.

A. Bellen, Z. Jackiewicz, R. Vermiglio, M. Zennaro; Stability analysis of Runge-Kutta methods for Volterra integral equations of the second kind, IMA J. Numer. Anal., 10 (1990), 103-118.

D. Conte, R. D’Ambrosio, G. Izzo, Z. Jackiewicz; Natural Volterra Runge-Kutta methods, Numer. Algorithms, 65 (2014), 421-445.

Ixaru, L.Gr. and Vanden Berghe; G. Exponential fitting, Kluwer Academic Publishers, Dordrecht, 2004.