Certain Identities of the Lie - derivative of Tensors in Generalized BK-Fifth Recurrent Finsler Space
Main Article Content
Abstract
This study employs advanced tensor calculus techniques to investigate the properties of the tensorial derivative in generalized fifth-order recurrent Finsler spaces. By systematically analyzing the underlying geometric structure, we derive identities that provide new insights into the relationships between various tonsorial quantities. Our results demonstrate the effectiveness of these techniques in exploring complex geometric structures. This paper introduces a new identity connecting the tensors in generalized fifth recurrence Finsler space for Cartan's fourth curvature tensor in the sense of Berwald by using Lie-derivative. We prove that the Lie - derivative and the Berwald covariant derivative of the fifth order for some curvature and torsion tensors are commutative under certain conditions. We have shown the Lie - derivative for some tensors behave as fifth recurrent and we obtain various identities on Lie - derivative in .
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
A. M. AL-Qashbari and S. M. Baleedi; Study on generalized BK-5 recurrent Finsler space, Computational Mathematics and its Applications, 1(1), (2023), 009-020.
H. Gouin; Remarks on the Lie derivative in fluid mechanics, International Journal of Non- Linear Mechanics, 150 (2023), 1-16.
M. A. Opondo; Study of projective curvature tensor W_jkh^i in bi-recurrent Finsler space, M.Sc. Dissertation, Kenyatta University, Nairobi, Kenya, 2021.
N. Gruver, M. Finzi, M. Goldblum and A. Wilson; The Lie derivative for measuring learned equivariance, arXiv:2210.02984, 1 (2022), 1-23.
E. Pak and G. Kim; Reeb Lie derivatives on real hyper surfaces in complex hyperbolic two-plane Grass mannians, Filomat, 37(3) (2023), 915-924.
A. A. Abdallah and B. Hardan; Two results to clarify the relationship between P_ijk^h and R_ijk^h with two connections of third order in Finsler spaces, The Scholar Journal for Sciences & Technology, 2(4) (2024), 52-59.
A. A. Abdallah and B. Hardan; P-Third order generalized Finsler space in the Berwald sense, Bull. Pure Appl. Sci. Sect. E Math. Stat. 43E(1) (2024), 43–52.
A. A. Abdallah, A. A. Navlekar and K. P. Ghadle; On certain generalized BP-birecurrent Finsler space, Journal of International Academy of Physical Sciences, 25(1) (2021), 63-82.
A. A. Abdallah, A. A. Hamoud, A. A. Navlekar, K. P. Ghadle; B. Hardan and H. Emadifar, The necessary and sufficient condition for cartan's second curvature tensor which satisfies recurrnce and birecurrence property in generalized Finsler spaces, Journal of Finsler Geometry and its Applications, 4(2) (2023), 113-127.
F. A. Ahmed and A. A. Abdallah; The conditions for various tensors to be generalized B-trirecurrent tensor, International Journal of Advanced Research in Science, Communication and Technology, 4(2) (2024), 511-517.
A. M. Al-Qashbari, A. A. Abdallah and F. A. Ahmed; On generalized birecurrent Finsler space of mixed covariant derivatives in Cartan sense, International Journal of Research Publication and Reviews, 5(8) (2024), 2834-2840.
A. M. AL-Qashbari, A. A. Abdallah and S. M. Baleedi; A Study on the extensions and developments of generalized BK-recurrent Finsler space, International Journal of Advances in Applied Mathematics and Mechanics, 12(1) (2024), 38-45.
M. Atashafrouz and B. Najafi; On D-recurrent Finsler metrics. Bull. Iran. Math. Soc. 47 (2021), 143-156.
K. P. Ghadle, A. A. Navlekar and A. A. Abdallah; On B-covariant derivative of first order for some tensors in different spaces, Journal of Mathematical Analysis and Modeling, 2(2) (2021), 30-37.
K. P. Ghadle, A. A. Navlekar, A. A. Abdallah and B. Hardan; On W_jkh^i in generalized BP-recurrent and birecurrent Finsler space, AIP Conference Proceedings, (2024) 3087, 070001 (1-6).
A. A. Hamoud, A. A. Navlekar, K. P. Ghadle and A. A. Abdallah; Decomposition for Cartan’s second curvature tensor of different order in Finsler spaces, Nonlinear Functional Analysis and Applications, 27(2) (2022), 433-448.
F. Y. Qasem and A. A. Abdallah; On certain generalized BR-recurrent Finsler space, International Journal of Applied Science and Mathematics, 3(3) (2016), 111-114.
F. Y. Qasem and A. A. Abdallah; On study generalized BR-recurrent Finsler space, International Journal of Mathematics And its Application, 4(2-B) (2016), 113–121.
A. M. AL-Qashbari; A Note on some K^h-generalized recurrent Finsler space of higher order, Stardom Journal for Natural and Engineering Sciences (SJNES), 1 (2023), 69-93.
A. M. AL-Qashbari, A. A. Abdallah and A. S. Saeed; On decomposition for curvature tensor field K_jkh^i in generalized K_((B))-quod-recurrent space, Journal of International Academy of Physical Sciences, 28(3) (2024), 169-184.
A. M. AL-Qashbari and S. M. Baleedi; On Lie-derivative of M-projective curvature tensor and K-curvature Inheritance in GBK-5RF_n, Acta. Universities Apuleius, 76 (2023), 13-24.
A. M. AL-Qashbari, S. Saleh and I. Ibedou; On some relations of R-projective curvature tensor in recurrent Finsler space, Journal of Non-Linear Modeling and Analysis (JNMA), Accepted, (2024).
A. A. Abdallah; Study on the relationship between two curvature tensors in Finsler spaces, Journal of Mathematical Analysis and Modeling, 4(2) (2023), 112-120.
A. A. Abdallah, A. A. Navlekar, K. P. Ghadle and B. Hardan; Fundamentals and recent studies of Finsler geometry, International Journal of Advances in Applied Mathematics and Mechanics, 10(2) (2022), 27-38.
K. P. Ghadle, A. A. Navlekar and A. A. Abdallah; Analysis for Cartan's second curvature tensor in Finsler space, International Journal of Advanced Research in Science, Communication and Technology, 2(3) (2022), 1-5.
Y. B. Shen and Z. Shen; Introduction to modern Finsler geometry, World Scientific Publishing Company, 2016.