Thermodynamic Stability of Microcline in Hydrothermal Ore System at Malanjkhand Copper Deposit, India

Main Article Content

Dinesh Pandit

Abstract

Mineral solubility calculations were used to establish the phase relations for the microclinization process at elevated temperature and pressure conditions. Mineral phases identified in the mineralization zone at the Malanjkhand, are the key component to construct hydrothermal alteration reactions is involving plagioclase, microcline, kaolinite, biotite, chlorite, and chalcopyrite. Theoretical modeling using standard state thermodynamic database suggested that the activity of K+ ions regulate the microclinization process in the temperature range 300oC to 350oC with an insignificant consequence of pressure during a hydrothermal alteration in the Malanjkhand copper deposit. Potash-rich hydrothermal solution promotes the deposition of ore minerals at Malanjkhand. Correlation of temperature with equilibrium kinetic and hydrothermal alteration processes are indicative of mineral-mineral and mineral-fluid stability in natural environments. The results of this study are very useful in crucial mineral exploration planning and developments of theoretical models of hydrothermal fluid-granite reactions.

Article Details

How to Cite
1.
Pandit D. Thermodynamic Stability of Microcline in Hydrothermal Ore System at Malanjkhand Copper Deposit, India. J. Int. Acad. Phys. Sci. [Internet]. 2022 Jun. 15 [cited 2024 May 19];26(2):199-210. Available from: https://www.iaps.org.in/journal/index.php/journaliaps/article/view/855
Section
Articles

References

M. H. Reed, Calculation of simultaneous chemical equilibria in aqueous-mineral-glass systems and its application to modelling hydrothermal processes, Reviews in Economic Geology, 10 (1998), 109-123.

J. M. ferry, Reaction mechanism, physical conditions, and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from south-central Maine, USA. Contribution to Mineralogy and Petrology, 68 (1979), 125-139.

S. Nishimoto and H. Yoshida, Hydrothermal alteration of deep fractured granite: effects of dissolution and precipitation, Lithos, 115 (2010), 153-162.

A. J. Boyce, P. Fulignati and A. Sbrana, Deep hydrothermal circulation in a granite intrusion beneath Larderello geothermal area (Italy): constraints from mineralogy, fluid inclusions and stable isotopes. Journal of Volcanology and Geothermal Research, 126 (2003), 243-262.

P. A. Candela and P. M. Piccoli, Magmatic contributions to hydrothermal ore deposits: an algorithm (MVPart) for calculating the composition of the magmatic volatile phase. Reviews in Economic Geology, 10 (1998), 97-108.

W. A. Deer, R. A. Howie and J. Zussman, An Introduction to the Rock Forming Minerals, Longman Group Limited, London, (2013).

I. Wyart and G. Sabatier, Transformations mutuelles des feldspath alcalins. Bulletin de la Societe francaise de Mineralogie et de Cristallographie, 79 (1956), 574-581.

J. R. Goldsmith and F. Laves, Potassium feldspar structurally intermediate between microcline and sanidine, Geochimica et Cosmochimica Acta, 6 (1954), 100-118.

I. Parsons, Feldspar. Encyclopedia of Geology, Second Edition, Academic Press Elsevier Ltd. (2021), 271-286. https://doi.org/10.1016/B978-0-12-409548-9.12101-3

R. M. Barrer and L. Hinds, Hydrothermal synthesis of potash feldspar in the range 195-200oC. Nature, 166 (1950), 562.

L. J. G. Schermerhorn, The granites of Trancoso (Portugal): a study in microclinization. American Journal of Science, 254 (1956), 329-348.

D. Pandit and M. K. Panigrahi, Comparative petrogenesis and tectonics of Paleoproterozoic Malanjkhand and Dongargarh granitoids, Central India. Journal of Asian Earth Sciences, 50 (2012), 14-26.

D. Pandit, Thermodynamic model for hydrothermal sulfide deposition in the Paleoproterozoic granite ore system at Malanjkhand, India. Indian Journal of Geo-Marine Sciences, 44 (2015), 1697-1711.

M. K. Panigrahi, R. K. Naik, D. Pandit and K. C. Misra, Reconstructing physico-chemical parameters of hydrothermal mineralization at the Malanjkhand copper deposit, India from mineral chemistry of biotite, chlorite and epidote. Geochemical Journal, 42 (2008), 443-460.

D. Pandit, Geochemistry of feldspar intergrowth microtextures from Paleoproterozoic granitoids in Central India: implications to exsolution processes in granitic system. Journal of the Geological Society of India, 85 (2015), 163-182.

M. K. Panigrahi and A. Mookherjee, The Malanjkhand copper (±molybdenum) deposit: mineralization from a low-temperature ore fluid of granitoid affiliation. Mineralium Deposita, 32 (1997), 133-148.

D. Pandit, M. K. Panigrahi and T. Moriyama, Constrains from magmatic and hydrothermal epidotes on crystallization of granitic magma and sulfide mineralization in Paleoproterozoic Malanjkhand granitoid, Central India. Chemie der Erde/Geochemistry, 74 (2014), 715-733.

D. Pandit, M. K. Panigrahi, T. Moriyama, and S. Ishihara, A comparative geochemical, magnetic susceptibility and fluid inclusion studies on the Paleoproterozoic Malanjkhand and Dongargarh granitoids, Central India and implications to metallogeny. Mineralogy and Petrology, 108 (2014), 663-680.

M. K. Panigrahi, B. R. Bream, K. C. Misra and R. K. Naik, Age of granitic activity associated with copper-molybdenum mineralization at Malanjkhand, Central India. Mineralium Deposita, 39 (2004), 670-677.

D. Pandit, A comparative study of the Paleoproterozoic Malanjkhand and Dongargarh Granitoids, Central India: Implications to Crustal Evolution and Metallogeny. Ph. D. thesis. IIT Kharagpur (2008),

Online: http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/408;

Online: http://eprints.csirexplorations.com/217/.

D. Pandit, Chloritization in Paleoproterozoic granite ore system at Malanjkhand, Central India: mineralogical studies and mineral fluid equilibria modeling. Current Science, 106 (2014), 565-581.

M. K. Panigrahi, D. Pandit and R. K. Naik, Genesis of the granitoid affiliated Paleoproterozoic copper-molybdenum deposit at Malanjkhand: a review of status. In S. Kumar (Eds.) Magmatism, Tectonism and Mineralization, Macmillan Publisher India Limited (2009), 265-292.

D. B. Sikka, W. Petruk, C. E. Nehru and Z. Zhang, Geochemistry of secondary copper minerals from Proterozoic porphyry copper deposit, Malanjkhand, India. Ore Geology Reviews, 6 (1991), 257-290.

R. Kretz, Symbols of rock-forming minerals. American Mineralogist, 68 (1983), 277-279.

S. A. Wood, Calculation of activity-activity and logfO2-pH diagrams, Reviews in Economic Geology, 10 (1998), 81-96.

S. A. Wood and I. M. Samson, Solubility of ore minerals and complexation of ore metals in hydrothermal solutions, Reviews in Economic Geology, 10 (1998), 33-77.

J. W. Johnson, E. H. Oelkers and H. C. Helgeson, SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000oC. Computer & Geoscience, 18 (1992), 899-947.

S. W. Lonker, J. D. F. Gerald, J. W. Hedenquist, and J. L. Walshe, Mineral-fluid interactions in the Broadlands-Ohaaki geothermal system, New Zealand. American Journal of Science, 290 (1990), 995-1068.

S. W. Lonker, H. Franzson, H. Kristmannsdottir, Mineral-fluid interactions in the Reykjanes and Svartsengi geothermal systems, Iceland, American Journal of Science, 293 (1993), 605-670.

S. L. Brantley and L. Stillings, Feldspar dissolution at 25oC and low pH. American Journal of Science, 296 (1996), 101-127.

S. Arnorsson and A. Stefansson, Assessment of feldspar solubility constants in water in the range 0o to 350oC at vapor saturation pressures. American Journal of Science, 299 (1999), 173-209.

T. S. Bowers, K. J. Jackson and H. C. Helgeson, Equilibrium activity diagrams for coexisting minerals and aqueous solutions at pressures and temperature to 5 kb and 600oC. Springer-Verlag, Berlin, 1984.

D. Pandit, s. Bhattacharya and M. K. Panigrahi, Dissecting through the metallogenic potentials of older granitoids - case studies from Bastar and Eastern Dharwar cratons India. Geological Society of London Special Publication, 489 (2019), 157-188. https://doi.org/10.1144/SP489-2019-342.

D. Pandit, Lattice preferred orientation analysis of deformed quartz using X-ray Texture Goniometry: an advanced application of High Resolution X-ray Diffractometer. Journal of the Geological Society of India, 79 (2012), 169-174.

D. Pandit, Application of High-Resolution X-ray Diffractometry in Measurements of Residual Stress and Strain Rate on Deformed Quartz from Malanjkhand Copper Deposit, India. Journal of Scientific Research, 66 (2022), 1-10.

D. Pandit, Crystallization evolution of accessory minerals in Paleoproterozoic granites of Bastar Craton, India. Current Science, 114 (2018), 2329-2342.