Common Fixed Point Results in Super Metric Spaces
Main Article Content
Abstract
Recently, Karapinar and Khojasteh1 proposed a new structure, namely the Super Metric Spaces, a revolutionary generalisation of metric spaces. In the framework of super metric spaces, we present a common fixed point result in this paper. To support this research, we consider an illustrative example.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
E. Karapinar and F. Khojasteh; Super Metric Spaces, Filomat in press.
S. Banach; Surles operations dans les ensembles abstraits et leur application aux equations itegrales, Fundamenta Mathematicae 3 (1922), 133-181.
T. Abdeljawad, E. Karapinar and K. Tas; A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl. 63 (2012), 716-719.
M. Akkouchi; Common fixed point theorems for two self-mappings of a b-metric space under an implicit relation, Hacet. J. Math. Stat. 40 (6) (2011), 805–810.
B. Alqahtani, A. Fulga and E. Karapinar; Sehgal Type Contractions on b-Metric Space, Symmetry 10 (2018), 560.
B. Alqahtani, A. Fulga, E. Karapinar and V. Rakocevic; Contractions with rational in- equalities in the extended b-metric space, J. Inequal. Appl. 2019 (2019), 220.
T. V. An, N. Van Dung, Z. Kadelburg and S. Radenovic; Various generalizations of metric spaces and fixed point theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RAC- SAM 109(1) (2015), 175-198.
H. Aydi, C.M. Chen and E. Karapinar; Interpolative C´iric´Reich Rus type contractions via the Branciari distance, Mathematics 7 (2019), 84.
M. Jleli and B. Samet; A new generalization of the Banach contraction principle, J. Inequal. Appl. 38 (2014).
E. Karapinar; Recent advances on metric fixed point theory: A review, Appl. Comput. Math. in press.
E. Karapinar; A note on a rational form contraction with discontinuities at fixed points, Fixed Point Theory 21 (2020), 211-220.
E. Karapinar, D. O’ Regan and B. Samet; On the existence of fixed points that belong to the zero set of a certain function, Fixed Point Theory Appl. 2015 (2015) 1-14.
W. Kirk, N. Shahzad; b-Metric spaces, Fixed Point Theory in Distance Spaces, (2014) 113-131.
B. Popovic, S. Radenovic, S. Shukla; Fixed point results to tvs-cone b-metric spaces, Gulf J. Math. 1 (2013) 51–64.
B. Samet, C. Vetro and P. Vetro; Fixed point theorem for α-ψ contractive type mappings, Nonlinear Anal. 75 (2012) 2154-2165.
D. Wardowski; Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 94 (2012).
S. Czerwik; Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11.
V. Berinde; Sequences of operators and fixed points in quasi metric spaces, Stud. Univ. Babes-Bolyai Math. 41 (1996), 23-27.
M. Boriceanu, M. Bota and A. Petrusel; Multivalued fractals in b-metric spaces, Cent. Eur.J. Math. 8(2) (2010), 367-377.
S. Czerwik, K. Dlutek and S.L. Singh; Round-off stability of iteration procedures for set- valued operators in b-metric spaces, J. Natur. Phys. Sci. 11 (2007), 87-94.
P. Hitzler and A.K. Seda; Dislocated topologies, J. Electr. Eng. 51(12) (2000), 3-7.
E. Karapinar and A. Fulga; Contraction in Rational Forms in the Framework of Super Metric Spaces, Mathematics 10 (2022), 3077.