pp. 149-160

Sentiment Classification of COVID-19 Tweets using BERT

Smitesh D. Patravali*

Department of CSE, SDMCET, Dharwad, Karnataka. Corresponding Author Email.smitesh.patravali@gmail.com

Siddu P.Algur

Vice Chancellor

Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka

Nihal S. Algur

Bosch Global Software Technologies Pvt. Ltd, Bangalore

(Received January 23, 2023, Revised March 25, 2023, Accepted May 10, 2023)

Abstract: The COVID-19 has instigated anxiety with loss of lives. This could have been avoided if the spread was noticed in the early stages of the pandemic. Sentiment analysis is a technique to find out individual's emotion by investigation on social media. In this paper, a methodology is proposed to carry out multi-label classification of COVID-19 tweets using Bidirectional Encoder Representation from Transformer (BERT). The proposed work compares the accuracy of BERT models on the SenWave dataset. The outcomes are indicated by heatmap representation of tweets across labels. The results specify that the greater part of the tweets were joking, empathetic, optimistic, and pessimistic during the COVID-19. The carried work examines the occurrence of Unigrams, Bigrams with comparative performance of BERT, TinyBERT and DistilBERT.

Keywords: BERT, TinyBERT, DistilBERT, Heatmap, Tweets, COVID-19.

1. Introduction

The COVID-19 sudden occurrence affected people on a massive scale and has disturbed human lives. The COVID-19 pandemic has created challenges in monetary access, food and supply chain, global health, and the work-life balance. Nowadays social media platforms are being processed for extracting the people's opinions about a particular situation. The attitude or sentiment plays a decisive role in evaluating the behavior of a person. The sentiments can be interpreted and classified into different categories accordingly. Hence, a real time analysis provides insight to the current scenario to make decisions. Sentiments or feelings have been important fraction of public for knowing their activities Coronavirus has also posed a challenge in terms of safety, control, readiness and action by various governments. This has led to a crisis and has triggered the issue of relocation adaptability for health communities. SenWave dataset is designed by collecting millions of tweets to assess the overall increase and drop of sentiments during the outbreak of pandemic. BERT is a deep learning algorithm and applied on text to achieve better results and has sparked a revolution in transfer learning.

The ruthless acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the contagious virus known as Coronavirus disease 2019. The first case of the disease was originated in Wuhan, China, in December 2019, and it is thought to have come from there. Since then, the disease has become a major health issue all over the world. After the virus's genome was sequenced, it was discovered that it was genetically related to the 2003 SARS pandemic, which is why it is called SARS-CoV-2. It is not clear where the virus came from. Due to the 96% genome sequence similarity between SARS-CoV-2 and another Coronavirus prevalent in bats, it is speculated that it originated in bats¹⁻⁴. Jain et.al.⁵ investigated various measures for twitter emotion assessment utilizing decision tree models and multinomial naive baye's models. The choice tree acquires the best outcomes with improvement in accuracy and F1-score. Researchers from various nations have attempted to converge and distribute COVID twitter datasets. Pokharel et al.⁶ discussed Nepalese attitude towards the COVID outbreak. The tweets from May 21-31, 2020 were collected and specific keywords like CORONAVIRUS and COVID-19 were used.

The transformer is a recurrent or convolution neural network-free sequence and transduction model. The process of transforming a sequence of input of type X into output of type Y is known as transduction. For instance, a sentence can be translated from English to Hindi. The attention mechanism is used by the transformer to model the long-term dependencies between input and output. This indicates that a long sentence's word-toword relationships has been learned to outline the sequence's context during training. Modeling long-term dependencies with an attention mechanism involves storing network states independently and switching attention between them. First, the encoders store the hidden layer states, and then data from the encoders is sent to the decoding layers. By highlighting some features, this filtering procedure adds context to the decoder. Self-attention tries to figure out how each input in the sequence relates to the other words to boost an improved understanding as stated by the authors ⁷⁻¹³. Emotions such as anger, fear, joy and sadness, were analyzed using the Indian Twitter data. Additionally, the three other models were compared to the obtained results: LSTM, logistic regression (LR) and support vector machine (SVM). The BERT model had an accuracy of 89 percent, while the other models had an accuracy of 75%, 74.75 % and 65 %, respectively by the authors ¹⁴.

A transformer-based BERT model, known as CT-BERT, was applied by the authors¹⁵. In terms of accuracy of classification, this model outperformed the BERT-LARGE model by 10-30%. The COVID-19 Category dataset had the accuracy value of 94.9% when the CT-BERT was tested on diverse data sets. The authors¹⁶ used the COVIDSENTI data set and found that among transformer-based models (XLNET, BERT, ALBERT and DistilBERT), the BERT model had the highest accuracy of 94.8%. In a similar vein, the Bidirectional LSTM extension was utilized by the authors¹⁷ to develop multi-class sentiment assessment model (SAB-LSTM). In comparison to the LSTM and BLSTM models, this model performed better on news articles and long texts posted on shared media. The addition of additional layers assisted the models in avoiding issues with over fitting and dynamically optimized the model parameters for the given dataset. BERT language model-based sentiment investigation was carried for various geographical related dataset in china, Australia and Nepal, where greater part of sentiment was fear¹⁸. The authors 19 designed neural network for emotion classification of documents. In a cross-language based sentiment analysis of European tweets, it was found that the lockdown information was correlated with deterioration of mood.

The paper is organized as follows: Section 2 discusses the steps involved in proposed methodology. Section 3, provides the analysis of experimental outcomes and Section 4 concludes the paper.

2. Proposed Methodology

BERT

BERT model was announced in 2018 by Google. This model distinguishes itself from other models by evaluating the sentence both left-to-right and right-to-left. This guarantees a better comprehension of the word relationships. Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) are the two techniques used to train the BERT. 15% of the sentence's words are replaced with mask tokens. The context is then used by

the model to predict those words' original value. Additionally, 10% of the words are substituted at random, while the other 10% percent remain unchanged. Making connections between words is the primary goal of MLM. The embedding matrix is multiplied with the output to obtain vocabulary, and an additional layer is added to the encoder's output to accomplish this. Finally, word probability is calculated using softmax.

NSP exploits the association between sentences, whereas MLM establishes on the relationship between the words in the sentence. Pairs of sentences are fed during the training. NSP anticipates whether the second sentence pursues the first sentence. However, before the model receives the entire sentence, 50% of it is randomly altered. The optimization is carried out with the intention of reducing the overall loss by combining MLM and NSP.

Figure 1. Architecture of BERT Model

Algorithm for Multi Label Sentiment Classification :

Input : Senwave Dataset (Approx 1000 English tweets).

Output : Computing accuracy of BERT Models.

- Step 1 : Pre-processing of dataset by removing stop words and lemmatization.
- Step 2 : To obtain a plot of Unigrams and Bi-grams from March to July'2020.
- Step 3 : To split dataset into train(70%) and test set(30%).
- Step 4 : Apply the BERT variants and obtain the heatmap representation.
- Step 5 : To assess the accuracy of multi-label classification
- End

3. Experimental Results

A. Analysis of tweets by BERT

Figure 2. BERT based sentiment occurrence in SenWave dataset from March to July of pandemic.

								Optimis	tic	Pessimistic	Jo	king	Sad	Anxious	
	Optimistic	Pessimi	stic Jo	king	Sa	d	Optimistic	102		92	4	11	88	9	
Optimistic	70	119		32	97	1	Pessimisti	92		57	6	69	130	107	
Pessimistic	119	44		90	11()	Joking	41		69	1	37	45	99	
Joking	32	90		140	60		Sad	88		130	4	15	110	49	
Sad	97	110		60	77		Anxious	9		107	9	9	49	168	
			Optimi	istic	Pessimi	stic	Joking	Sad		Anxious	S	urprise			
	Opt	imistic	33		170		77	32		40		55			
	Pess	simistic	170).	88		65	110		139		45			
	Jo	king	77		65		150	43		80		99			
	5	Sad	32	R.	110	1	43	100		120		50			
	An	xious	40	40		139		80	120		99		67		
	Su	rprise	55		45		99	50		67		160			
		0	otimistic	Pes	simistic	Joki	ing S	ad A	Anxio	ous Emp	athetic	Surpris	9		
	Optimis	stic	95		88	70) 4	6	44	1 1	0	130			
	Pessimi	istic	88		99	56	5 1	10	78	3 3	9	60			
	Jokin	g	70		56	17	0 2	7	77	7 (7	92			
	Sad		46	3	110	27	7 6	5	81	1 9	13	60			
	Anxio	US	44		78	71	7 8	1	55	5 4	2	106			
	Empath	etic	50		39	67	7 9	3	42	2 1	42	33			
	Surpri	se	130		60	92	2 6	0	10	6	3	167			

Figure 3. BERT based sentiment heatmap with 4-7 sentiments for 1000 tweets on SenWave dataset

Figure 4. TinyBERT based sentiment occurrence in SenWave dataset from March to July of pandemic.

				C	ptim	istic	Pessi	mistic	J	loking		S	Sad		
		Optir	nistic		67		3	3		99			44		
		Pessi	misti	C	33		81			43		1	156		
		Jok	ing		99		4	3		102		76			
		S	ad	ł			15			76		119			
			0	ptimis	stic	Pess	mistic	Jok	ina		Sad		Anxio	us	
	Op	otimistic		167		3	7	16	64	44			52		
	Pes	ssimisti	с	37		4	4	7	8		57		132	2	
	J	Joking		164		7	'8	8	3		66		94		
		Sad		44		5	7	6	6		99		81		
	Anxious			52		132		9	4	81			102	2	
			Optin	ptimistic Pes		simistic	Jol	ting	Sa	ad	An	xious	Su	rprise	
	Optimistic		5	55		43		31 4		7 90		90		32	
	Pessi	imistic	4	3	1	107	5	7	8	8		63	1	95	
	Joł	king	3	1		57	8	1	14	43		33	1	50	
	S	ad	4	7		88	14	43	9	2		41	1	166	
	Anx	nrico	3	U D		63 05	1.	0	4	1		69 40	1	49	-
	Jul	prise	J.	<u>_</u>		55		•				43		00	
		Optin	nistic	Pess	imistic	: Jo	oking	Sa	d	Anxi	ious	Em	pathetic	Surp	rise
Opti	mistic	9	9	(67 02		34	51		4	9		76	6	6
Pessi	imistic king	5 D	/ 1	1	03 22		122	33		6 7	1		103	2.	U 7
S	ad	5	• 1		33		81	59		9	2		60	5	, 0
Anx	tious	4	9	(61		70	92		4	7		64	2	9
Empa	athetic	7	6	1	03		143	60		6	4		70	14	4
Sur	prise	6	6	9	90		27	50		2	9		144	8	1

Figure 5. TinyBERT based sentiment heatmap with 4-7 sentiments for 1000 tweets on SenWave dataset.

C. Analysis of tweets by DistilBERT

Figure 6. DistilBERT based sentiment occurrence in SenWave dataset from March to July of pandemic.

	Optimistic	Pessimistic	Joking	Sad
Optimistic	100	34	78	43
Pessimistic	34	159	65	88
Joking	78	65	163	45
Sad	43	88	45	99

				Optim	istic	Pessi	mistic	Jo	king		Sad	A	nxious		
	Optimis		stic	99		5		4	13		78		37		
		Pessimi	istic	55		13	37	8	33		62		73		
		Jokin	g	43	43 78		3	1	56		87		102		
		Sad		78			2	8	37		100		94		
		Anxio	us	37		73		102			94		76		
			Opt	imistic	Pess	imistic	Jok	ing	Sa	ad	Anxi	ous	Surp	rise	
	Optimistic			65	5 4		49 11		5	57		77		40	
	Pessimistic			49	19 1		17 12		33		56		89		
	Jo	Joking		119 1		123 1		70	132		78		29		
	S	Sad ixious		57	3	33	1	32	5	5	15	4	3	1	
	An			77		56	7	8	15	54	67	/	7	7	
	Sur	rprise		40	8	89	2	9	3	1	77	7	8	0	
		Opti	mistic	Pess	mistic	Jol	ing	Sa	ad	Anx	ious	Empa	thetic	Surp	rise
Opti	imistic	4	14	2	7	6	7	5	5	9	1	14	47	33	3
Pess	imistic	2	27	1	20	4	2	6	0	4	9	7	3	4	7
Jo	Joking 67 42		2	2 14		2	29		9	16	67	10	1		
S	Gad	5	55	6	0	29		7	7 4		44		51		5
An	xious	9	91	4	9	3	9	4	4	9	8	7	9	8	5
Emp	athetic	1	47	7	3	1	67	5	1	7	9	7	5	12	0
Sur	rprise	3	33	4	7	1)1	5	5	8	5	12	20	99	9

Figure 7. DistilBERT based sentiment heatmap with 4-7 sentiments for 1000 tweets on SenWave dataset

Figure 8. Plot of Unigrams and Bigrams from the dataset.

	I dole II	Semiment	occurrence i	ionn march to	5 U di j <u>2</u> 01	-01	
BERT	Optimistic	Anxious	Pessimistic	Empathetic	Joking	Surprise	Sad
March	56	110	99	102	143	74	150
April	102	150	59	90	56	98	50
May	88	65	63	78	72	56	87
June	156	79	142	88	80	66	69
July	77	91	91	145	60	41	90

Table I. Sentiment occurrence from March to July 2020.

Tiny BERT	I						
March	149	133	97	129	87	90	117
April	82	50	64	102	125	88	129
May	63	88	109	132	59	145	76
June	102	92	56	67	87	100	83
July	77	44	87	80	99	61	91
Distil BERT	1						
March	78	133	140	132	132	140	144
April	98	120	97	144	144	74	128
May	142	66	120	43	43	49	132
June	129	59	69	78	78	50	67
July	54	92	72	81	81	107	51

Table II. Performance metrics of the models

Models	Accuracy
BERT	77%
TinyBERT	72%
DistilBERT	74%

4. Discussion

Figure 2, 4 and 6 provide the number of occurrences of a given sentiment from March to July 2020. Figure 3, 5 and 7 provide a co-occurrence to the rest of the sentiments. It was found that some of the prominent sentiments were *joking*, *pessimistic* and *sad*. Also it was found that most tweets that were associated with *joking* are either *sad*. About 21% of the tweets have two sentiment associated to them and 7% have no sentiment. An insignificant number of tweets have 3 or more emotions associated to them which indicate that populace does not show multiple emotions at the same time. The accuracy with BERT is relatively significant than the other BERT variants.

5. Conclusion

In this paper, a method is proposed to perform multi-label classification of COVID-19 tweets using Bidirectional Encoder Representation from Transformer (BERT). The proposed work compares the accuracy of BERT models on the SenWave dataset. The outcomes are indicated by heatmap representation of tweets across labels. The results specify that the greater part of the tweets have been empathetic, joking, optimistic and pessimistic during the COVID-19 period. The carried work examines the occurrence of Unigrams, Bi-grams, and sentiment labels during the pandemic period.

As a part of future work, the proposed work can be extended for different for geographical places to know their behavior.

Acknowledgement: We thank our institutions S D M College of Engineering and Technology, Dharwad and Vijayanagara Sri Krishnadevaraya University, Ballari for providing for their timely support and guidance.

References

- 1. C Manning, H Schutze; *Foundations of statistical natural language processing*, MIT press, 1999.
- 2. B Liu, L. Zhang; A survey of opinion mining and sentiment analysis, *Mining text data*, *Springer*; (2012) 415-463.
- 3. W Medhat, A Hassan, H Korashy; Sentiment analysis algorithms and applications: A survey, *Ain Shams Engineering Journal*, 5(4), (2014), 1093-1113.
- 4. DMEDM Hussein; A survey on sentiment analysis challenges, *Journal of King Saud University-Engineering Sciences*, 30(4), (2018), 330-338.
- 5. A Jai, P Dandannavar; Application of machine learning techniques to sentiment analysis, *Proceedings of the 2nd International Conference On Applied and Theoretical Computing And Communication Technology (iCATccT), Bangalore, India*, 21-23 July 2016; 628-632.
- 6. B P Pokharel; Twitter sentiment analysis during covid-19 outbreak in Nepal, SSRN, 3624719 (2020).
- 7. Chen Emily, Lerman Kristina, and Ferrara Emilio; Tracking social media discourse about the covid-19 pandemic: Development of a public coronavirus twitter data set, *JMIR Public Health Surveill*, 6(2), (2020) :e19273.
- 8. S. Wakamiya, Y. Kawai and E. Aramaki; *Twitter-based influenza detection after flu peak via tweets with indirect information: Text mining study*, JMIR Public Health Surveill, 4(3):e65, 2018.
- 9. W. G. Dos Santos; Natural history of covid-19 and current knowledge on treatment therapeutic options, *Biomed Pharmacother*, 129 (2020), 110493.
- 10. K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, and R. F. Garry, The proximal origin of sars-cov-2, *Nat Med*, 26(4), (2020), 450-452.
- N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G. F. Gao, W. Tan, Investigating China Novel Coronavirus, and Team Research. A novel Coronavirus from patients with pneumonia in china, 2019, *N Engl J Med*, 382(8), (2020), 727-733.

- 12. K. Shirato, M. Kawase, and S. Matsuyama. Wild-type human coronaviruses prefer cell-surface tmprss2 to endosomal cathepsins for cell entry, *Virology*, 517 (2018) 9-15.
- 13. Franck Touret, Magali Gilles, Karine Barral, Antoine Nougairède, Etienne Decroly, Xavier de Lamballerie, and Bruno Coutard. 2020.
- 14. T Wang, K Lu, K P Chow, Q Zhu; COVID-19 Sensing: Negative sentiment analysis on social media in China via Bert Model, *IEEE Access*, 8 (2020), 138162-138169.
- 15. J Zhou, S Yang, C Xiao, F Chen; Examination of community sentiment dynamics due to COVID-19 pandemic: A case study from Australia, *ArXiv* (2020) :200612185.
- 16. A Kruspe, M Haberle, I Kuhn, X X Zhu; Cross-language sentiment analysis of European Twitter messages during the COVID-19 pandemic, ArXiv (2020):200812172.
- 17. Q Yang, H Alamro, S Albaradei, A Salhi, X Lv, C Ma; SenWave: Monitoring the Global Sentiments under the COVID-19 Pandemic.
- 18. Y Li, T Yang; Word embedding for understanding natural language: a survey. In: Guide to big data applications, Springer; 2018.
- 19. E Allison Aiello, Audrey Renson and Paul N. Zivich; Social media and internet based disease surveillance for public health. 41(1), (2020), 101-118.