
ISSN 0974 - 9373 
 

Vol. 27 No. 1 (2023)           J. Int. Acad. Phys. Sci.             pp. 1-12  

 

 

 

Generalized MacWilliams Identities on SKE Weights 

for Linear Codes over Ring Zq 
 

 

Meenakshi Sridhar 
Department of Computer Science, Rajdhani College,  

Univesity of Delhi, New Delhi, India 
Email : meenakshi.sridhar.sharma@gmail.com  

 

Manohar Lal (Kaushik) 
School of Computer & Inf. Sciences, New Delhi-110068, India 

Email : prof.manohar.lal@gmail.com 

 
(Received January 23, 2023, Accepted February 25, 2023) 

 
Abstract: In Coding Theory/ Error-Correcting codes, the concept of 

distance, or of metric, is used as a measure of degree of dissimilarity 

between two words of equal length, which may be transmitted/ received 

in communication systems, or stored/ retrieved in digital storage devices. 

For the Euclidean-type, one of the types of distances, distance (or 

sometime, the square of the distance) between two words a = (a0, a1, …, 

an) and b = (b0, b1, …, bn) is the sum of the squares of the values—under 

the particular metric/distance of Euclidean-type—of differences (ai − bi) 

in the corresponding tuples of the two words a and b, for i = 1, 2, …, n. 

Euclidean-type distance is (i) regarded as the most relevant measure of 

efficiency for symmetric PSK-codes, (ii) used in wireless LAN standard 

IEEE 802.11b-1999, and (iii) extensively applied in analysis of 

convolution codes and Trellis codes. 

On the other hand, MacWilliams Identities provide a mechanism for 

deriving properties of large codes from corresponding properties of 

(generally very) small codes. The identities, which relate weight-

enumerators of a code and its dual code, were first derived in 1963 by 

MacWilliams1 for linear codes over finite fields for Hamming metric. 

MacWilliams-type identities for Sharma-Kaushik metrics (SK-metrics) 

are discussed2. 

In this paper, we investigate the more general case of the possible 

MacWilliams-type identities for Sharma-Kaushik Euclidean distance 

(SKE distance), a new concept to be defined. These investigations 

generalize the MacWilliams identities for Euclidean distance discussed 

in2-3. The results in the investigation have the potential for improving (i) 

the wireless LAN standard IEEE 802.11b-1999 (ii) functioning of 

MANET, VANET & other networks. 
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1. Introduction 
 

In the field of Coding Theory, including the Theory of Error Correcting 

Codes, the concept of distance, or of metric, is used as a measure of degree 

of dissimilarity between two words of equal length, which may be 

transmitted/ received in digital communication systems, or stored/ retrieved 

in digital storage devices. For digital systems, the concept was introduced and 

first used, between 1947 and 1950, by three pioneers of field: Richard W. 

Hamming, C. E. Shannon, & M J E Golay4-6. Hamming, probably, is the first 

to conceive the concept5, hence the first metric for digital systems is called 

Hamming metric. 

At the outset, it may be pointed out that the concepts of ‘distance’ and 

‘weight’ are quite closely related, and may be interchangeably used, 

particularly for codes, over rings & fields, because, for a metric d and 

corresponding weight w, we have the relation d(x,0) = w(x). 

Out of the various ways in which the concept of distance for digital 

systems is characterized, the Hamming-type distances and the Euclidean-type 

distances are well-known.  The Hamming metric, Lee metric, and Sharma-

Kaushik metric are well-known examples of Hamming-type distances, in 

which the distance between two words a = (a0, a1, …, an) and b = (b0, b1, …, 

bn) is the sum of the values—under the particular metric/distance of 

Hamming-type—of differences (ai – bi) in the corresponding tuples, for i = 1, 

2, …, n. Hamming-type distances have been extensively studied and used. 

On the other hand, for the Euclidean-type distances, the distance (or 

sometime, the square of the distance) between two words a = (a0, a1, …, an) 

and b = (b0, b1, …, bn) is the sum of the squares of the values—under the 

particular metric/distance of Euclidean-type—of the differences (ai – bi) in the 

corresponding tuples, for i = 1, 2, …, n. 

Euclidean-type distance is regarded as the most relevant measure of 

efficiency for symmetric PSK-codes, because correction to the closest 

codeword in squared Euclidean distance is the same as maximum likelihood 

decoding (MLD) w.r.t. Additive white Gaussian noise (AWGN) channel7. 

The wireless LAN standard IEEE 802.11b-1999 uses a variety of different 

Euclidean-type PSK’s depending on the data rate required. Also, Euclidean 

distance is extensively applied in the analysis of convolution codes and Trellis 

codes, whereas Hamming distance is frequently encountered in the analysis 

of block codes. 
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Two well-known Euclidean-type distances are Euclidean-Lee distance 

(generally called as Euclidean distance only, without the suffix Lee), and 

Euclidean-PSK. 

Apart from the ‘Conclusion’ section, the paper has five sections including 

this ‘Introduction’. Section 2 discusses various basic concepts and 

significance of each. Section 3 discusses a mechanism, called Gray map, 

which for a given metric, say M, converts each m-tuple, say X, with 

weight(X), under the given metric M, over a ring Zq to some tuple Y, of length 

n—which is some fixed multiple of m over Zq, such that weightM(X) = 

weightH(Y), where weightH(Y) denotes Hamming weight of Y. This 

mechanism is used in deriving MacWilliams-type identities for linear codes 

with a given metric from the already established corresponding identities for 

linear codes with Hamming metric. In Section 4, the core of this paper, we 

establish the MacWilliams-type identities for linear codes with SKE 

distances. Section 5 discusses potential applications of the established results. 

In the rest of this section, we briefly discuss the significance, in the area of 

error-correcting codes, of the two major terms in the title, viz. MacWilliams’s 

identities and SKE weight. 

MacWilliams Identities, irrespective of the distance used, provide a 

mechanism for deriving properties of large codes from the corresponding 

properties of (generally very) small codes. The identities involve the concept 

of weight-enumerator, which is significant in view of the fact that it contains 

significant information about a code, including its minimum distance, and the 

probabilities of decoding error and failure etc8. The identities were first 

derived in 1963 by MacWilliams1 for linear codes for Hamming metric. These 

identities for Lee distance, a Hamming-type distance, and for (Lee-) 

Euclidean distance, are discussed3. Also, MacWilliams-type identities for 

Sharma-Kaushik metrics (SK-metrics), which are Hamming-type metrics, are 

discussed2. 

Significance of Sharma-Kaushik metrics & SKE weights: The SKE-

metrics are important in coding theory because these can provide appropriate 

measures for various possible modulation schemes. Additionally, the 

corresponding SKE enumerators give much more information than the 

Hamming enumerator, while requiring, in some cases, even less than half as 

many variables as the complete enumerator9. 

 

2. Basic Concepts 
 

In this section we briefly discuss the following concepts, along with 

significance of each Dual Code, Sharma-Kaushik metric, Euclidean weight, 

Euclidean weight enumerator, Sharma-Kaushik Euclidean weight (SKE 
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weight), Sharma-Kaushik Euclidean weight enumerator (SKE weight 

enumerator). 

2.1. Dual Code. MacWilliam identities relate the weights of a code C and 

weights of its dual code C⊥. For a linear code C of length n over the ring Zq, 

its dual code, denoted by C⊥, is given by  

C⊥ = {(c1, c2, …, cn) ∈ (Zq)
n: ∑ ci . di𝑛

𝑖=1  = 0, ∀ (d1, d2, …, dn) ∈ C}. 

2.2. Sharma-Kaushik metrics & weight-functions10-15 

For integers q > 1, and m ≥ 1, consider a partition 𝓟 of Zq = {0, 1, …, (q –1)} 

into (disjoint, nonempty) subsets B0, B1, …, B m–1, Bm, such that 

i.  B0 = {0} 

ii. For i ∈ Zq, i ∈ Bs ⇔ (q – i) ∈ Bs 

iii. If i ∈ Bs, and j ∈ Bt, and s> t (as Natural numbers) then  

                min {i, q–i}> min {j, q–j} 

iv. If s> t, then | Bs | ≥ | Bt |, except for s = m, in which case we may 

have 

|B m| ≥ (½) |B m −1|, 

where |B|= number of elements in the set B. 

The partition 𝓟 now known as Sharma-Kaushik partition, or SK-partition 

introduces a weight-function 

(1)  𝑤𝑡_𝑆𝐾𝓟: Zq  {0, 1, …, m}, s.t     if i ∈ Bs, then 𝑤𝑡_𝑆𝐾𝓟(i) = s.   

From the definition above, for i ∈ Zq,  

(2)       max. (𝑤𝑡_𝑆𝐾(i)) = m.     

Further, for a codeword c= (c1, c2, …, cn), with ci ∈Zq, 

(3)       𝑤𝑡_𝑆𝐾𝓟(c) = ∑ 𝑤𝑡_𝑆𝐾𝑛
𝑖=1 (ci)          

The weight-function 𝑤𝑡_𝑆𝐾𝓟 is now known as Sharma-Kaushik weight-

function corresponding to the partition 𝓟.  

For two code words c = (c1, c2, …, cn) and c’ = (c’1, c’2, …, c’n) of C, the 

weight-function 𝑤𝑡_𝑆𝐾 defines a metric, called Sharma-Kaushik metric, or 

SK-metric, between two code-words of code C as follows 

  dSK-𝓟 (c, c’) = 𝑤𝑡_𝑆𝐾𝓟 (c− c’), where 

c – c’ = (c1– c1’, c2– c2’, …, cn – cn’). 

The discussion above gives rise to a method of generating metrics, and 

not just a method of defining a particular metric or weight function. For each 

partition 𝓟, there exists one weight function wt_Sk-𝓟 and one SK-metric      
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dSK-𝓟. Thus, there are possibly a number of weight functions and SK-metrics. 

For the rest of the discussion, it is assumed that partition 𝓟 is fixed and the 

suffix 𝓟 is dropped, and only the notations wt_Sk and dSK are used. 

As mentioned earlier, the idea of SK-partition, leads not merely to a single 

weight/ metric, but proposes a scheme of generating different weights and 

metrics for error-correcting codes. According to the scheme, Zq may be 

partitioned in a number of ways, with each partition leading to a different 

weight/ metric. Specific partitions lead to some well-known weights / metrics. 

For example, the partition  

𝓟H = {B0= {0}, B1= {1, 2, …, (q−1)}} 

yields the Hamming-weight function 𝑤𝑡_𝐻,  and the partition 

𝓟L= {B0= {0}, Bi = {i, (q−i)}: 1 ≤i ≤⌊q/2⌋, the integral part of q/2} 

yields Lee-weight function 𝑤𝑡_𝐿. 

Thus, the Hamming metric dH and the Lee metric dL become special cases of 

dSK. The weight enumerator contains information about a code, including its 

minimum distance, the number of Code words of each weight, and the 

probabilities of decoding errors and failures8. 

MacWilliams identities for (Lee-)Euclidean weights are proved3. One of the 

objectives of this paper is to prove the identities to more generalized case of 

SKE weights. In subsection 2.3, we introduce the concepts of Euclidean 

weight & Euclidean weight enumerator, and in subsection 2.4, we discuss the 

concepts of SKE weight and SKE weight enumerator. 

2.3. Euclidean weight & Euclidean weight enumerator 

For a code C, of length n, over a ring Zq, the Lee-weight  𝑤𝑡_𝐿 is given by  

wt_L (0) =0; and        for 1 ≤i ≤ ⌊q/2⌋, we have  

(4)     wt_L (i) = i, and wt_L (q−i) = i.             

The maximum value of {wt_L (i): i = 0, 1, 2, …, (q – 1)} = ⌊q/2⌋. 

(5)                              Let Cmax = (⌊q/2⌋)2              

The Euclidean weight of an n-tuple c = (c1, c2, …, cn) over ring Zq is defined 

as3 

(6)      𝑤𝑡_𝐸(c) = ∑ (𝑤𝑡_𝐿𝑛
𝑖=1 (ci))

2.              

The corresponding Euclidean-weight Enumerator of a linear code C of length 

n over Zq is defined as   

EWC (x, y) =∑ 𝐴𝑖
n ×𝐶𝑚𝑎𝑥
𝑖=0  x n ×Cmax – i

.  y
i,       

where Ai is the number of code-words of Euclidean-weight of i. 
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2.4. SKE weight & SKE weight enumerator 

SKE weight: Recalling from subsection 2.2, a partition 𝓟 of Zq = {0, 1, …, (q 

–1)} into (disjoint, nonempty) subsets B0, B1, …, B m–1, Bm, introduces a 

weight-function 

𝑤𝑡_𝑆𝐾𝓟: Zq  {0, 1, …, m}, s.t  

         if i ∈ Bs, then 𝑤𝑡_𝑆𝐾𝓟(i) = s.         

From the definition above, for i∈ Zq,  max. (𝑤𝑡_𝑆𝐾(i)) = m.     

Then, the Sharma-Kaushik Euclidean weight (SKE weight) of a codeword          

c = (c1, c2, …, cn), with ci ∈ Z q is given by 

(8)      𝑤𝑡_𝑆𝐾𝐸𝓟(c) = ∑  (𝑛
𝑖=1 𝑤𝑡_𝑆𝐾(ci))

2        

The corresponding SK-Euclidean-weight Enumerator (SKE weight 

enumerator) of a linear code C of length n over Zq is defined as  

(9)     SKEWC (x, y) =∑ 𝐴𝑖n ×m×m
𝑖=0  x n×m×m – i

.  y
i,       

where Ai is the number of code-words of SKE weight of i. 

 

3. Weight-preserving map from SKE code to Hamming code 
 

The use of Gray map (to be defined below) in the landmark paper16 where 

it was shown that interesting binary codes could be found as images of linear 

codes having some other underlying metric led to the Gray map becoming a 

useful tool for deriving weight-related properties of codes over rings Zq with 

some non-Hamming metric from the already established properties of binary 

codes (with Hamming metric). 

   The Gray map converts each m-tuple, say X with weightM(X), under a given 

(non-Hamming metric) M, over a ring Zq to some tuple Y, of length n which 

is some fixed multiple of m over Zq, such that weightM(X) = weightH(Y), 

where   weightH(Y) denotes Hamming weight of Y.   The Gray map preserves 

weight-related properties of the codes. This mechanism is used in deriving 

those weight-related property of a code, including MacWilliams-type 

identities for linear codes, which are already established for binary codes. 

Here, we use Gray map to establish MacWilliams identities for codes with 

SKE weight.  The required Gray map is defined as follows. 

For a fixed integer q >1, let the SKE-weight function, wt_SKE correspond to 

the partition 

𝓟= {B0, B1, B2, …, B m –1, B m} of Zq, 

Further, let t ≥ Max. {|Bi|: i =0, …, m}, and t be any divisor of q and a prime 

power, and Ft be a finite field with t elements.  
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It may be noted that under SK-metric, corresponding to the above partition, 

 the maximum weight {i: i ∈ Zq} = m. Hence, 

(10)                   Max. wt_SKE {i: i ∈ Zq} = m2.                 

1Define the function θ: Zq →(Ft)
m×m,  

    for x, y ∈ Zq; and 0≠ak∈ Ft,0≠bk ∈ Ft,  

as follows 

Case I:  if wt_SKE(x) = i < m2; and 0< x <⌊q/2⌋, then 

                  θ(x) = (0, ..., 0, am×m−i+1, ..., am×m). 

  Further, if y is such that y≠ x, 0< y <⌊q/2⌋with wt_SKE(y) = i < m, then 

      θ(y) = (0, ..., 0, bm×m−i+1, ..., bm×m), with 0≠bk≠ ak ≠ 0 for at least one k. 

Case II:  if wt_SKE(x) = i < m2 and ⌊q/2⌋< x < q, then 

                  θ(x) = (a1, ..., ai, 0, ..., 0), 

Further, if y is such that y≠ x, ⌊q/2⌋< y <q with wt_SKE(y) = i < m2, then 

     θ(y) = (b1, …, bi,0, …, 0), with 0 ≠ bk ≠ ak ≠ 0 for at least one k. 

Case III: if wt_SKE(x) = m2, then 

                     θ(x) = (a1, ..., ai, …, a m×m)  

               and for y≠ x and wt_SKE(y) = m2 

                  θ(y) = (b1, ..., bi, …, b m×m), with 0≠bk≠ ak ≠ 0 for at least one k. 

Choice for such a bk (≠0) ∈ Ft in each of the three cases is possible, as t ≥ Max. 

{|B i| for i = 1, 2, …, m×m}. 

As, for x ≠ y, θ(x) ≠ θ(y), therefore θ: Zq(Ft)
m×m is an injection, but not 

necessarily bijection, for which the condition q = tm×m should necessarily be 

satisfied, because for θ to be bijection q= | Zq | = |(Ft )
m×m |=tm×m. 

Theorem 3.1. For any ring Zq (q ≥2), and with the notations t and m etc. 

as discussed above, there exists a Gray map (say) ϕ from (Zq)
n to ((Ft )

m×m)n 

and the map ϕ is a weight preserving injective map from ((Zq)
n, wt_SKE) to   

(((Ft )
m×m)n, wt_H), where wt_H denotes Hamming weight of n-tuple over     

(Ft )
m×m. Further, for a code C of length n over Zq with wt_SKE as weight 

function  

(i) |C | = | ϕ (C)|, and  

                                                           
1 For the proposed function θ: Zq →(Ft)m×m, the number t is chosen taking into consideration the 

following two criteria:  

     (i) Ft should be a field; therefore, t should be a prime power 

    (ii) elements of Zq having same weight, should be representable distinctly by (distinct) elements of 

Ft. Hence,  

                    t ≥ Max. {|Bi|: i =0, …, m} 

The number m2 in (Ft )m×m is used in view of the fact that each element x of Zq—with SKE-w as its 

weight under SKE-metric—is to be mapped to some m-tuple (x1, x2, …, x 
m×m) having SKE-wt non-

zero elements of Ft , or equivalently having SK-w Hamming weight, with m×m being the maximum 

under each of wt_SKE and Hamming weight. 
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(ii)  ϕ (C) is the corresponding code with wt_H weight, and the 

corresponding weight enumerators are related by SKEC (x, y) = 

H ϕ(C) (x, y). 

Proof: The map θ: Zq →(Ft)
m×m, defined just above, can be extended to a 

map, through component-wise mapping, to the map  

         ϕ: (Zq)
n→(Ft)

m×m)n, for a natural number n>1, 

such that for x = (x1, x2, …, xn), ∈ (Zq)n with xi ∈ Zq,  

                     ϕ(x) = (θ(x1), θ(x2), …, θ(xn)) 

The map ϕ being defined component-wise from the map θ: Zq(Ft)
m×m, 

where θ is an injection—is also an injection.  

More explicitly, we have proved that there exist an injective map ϕ, which 

maps  x = (x1, x2, …, xn), ∈ Zq
n with wt_SKE(x) = ∑ wt_SKEn

1  (xi)= Wx (say) to 

ϕ (x) = (θ(x1), θ(x2), …, θ(xn)) ∈ ((Ft )
m×m)n, having wt_H( ϕ (x)) equal to Wx, 

implying that the map ϕ: ((Zq)
n, wt_SKE)  ((Ft)

m×m)n, wt_H), is weight 

preserving. 

Hence, from the fact that ϕ is injective, for any code C of length n over Zq,  

|C| = |ϕ(C)|. 

Also, by the fact that ϕ is weight preserving, SKE C (x, y) = H ϕ(C) (x, y). 

In the rest of the discussion, even θ may be denoted by ϕ, unless the distinction 

is essentially required. 

Next, we discuss the MacWilliams type identity on SKE-weight enumerator. 

 

4. A MacWilliams type identity on SKE-weight enumerator  

for linear codes over Zq 

 

 We start the discussion on MacWilliams type identity on SKE-weight 

enumerator with the following 

Theorem 4.1. Let C be a linear code of length n over Zq, and the notations 

be as before. Then there exists a code C’ of length m2.n over Ft   satisfying   

HC’ (x, y) = (1/ |ϕ(C)|) H ϕ(C) (x + (t− 1). y, x − y), 

where H$(x,y) denotes Hamming-weight enumerator of the code $. For the 

linear code C, the codes ϕ(C), and C’ may not be linear, yet each has only 

one codeword of weight zero viz. (0, 0, …, 0). 

Proof: For the linear code C of length n over Zq, let t (>1) be a positive 

divisor of q and a prime power. Further, let the map ϕ be a weight preserving 

map from ((Zq)
n, wt_SKE) to ((Ft)

m×m)n, wt_H). Such a map exists by the 

Theorem 3.1. Then ϕ(C) is a code of length m2.n over Ft, which is not 

necessarily linear. Let Hϕ(C) (x, y) be the Hamming weight enumerator of the 
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code ϕ(C). However, MacWilliams Identities are true even for non-linear 

codes [17], and hence for ϕ(C) also. Of course, in this case, the MacWilliams 

identity does not involve the dual code C⊥, but some other code, say, C’. 

Thus, MacWilliams transform HC’ (x, y) of H ϕ(C) (x, y)—where HC’ (x, y) 

corresponds to a code C’ of length m2.n over Ft—has the relation 

HC’ (x, y) = (1 /|ϕ(C)|) Hϕ(C) (x + (t − 1) y, x − y) 

This proves the first part of the Lemma. 

Also, as ϕ(C) is not necessarily linear, hence, C’ is not necessarily the dual 

code C⊥ of C. However, if ϕ(C) is a linear code, then17 C’ =ϕ(C)⊥.  

Next, we prove remaining part: codes ϕ(C), and C’ each has only one 

codeword of weight zero. 

To show ϕ(C) has only one codeword of weight zero: As C is assumed to be 

a linear code of length n over Zq, hence, the number of code words in C of 

wt_SKE (0) is 1. By definition, the map ϕ is weight preserving mapping, 

Therefore, in the code ϕ(C), number of code words of Hamming weight 0 is 

1.  

To show C’ has only one codeword of weight zero: 

For the Hamming-weight enumerator HC’ (x, y), let HC’ (x, y) = ∑ 𝐴′𝑚𝑛
𝑗=0 j   x

n – j 

yj, then for x=1 and y=0, we get  

             HC’ (1, 1) = A’0 

But by first part of the lemma,  

HC’ (x, y) = (1/ |ϕ(C)|) H ϕ(C) (x + (t− 1). y, x − y) 

Thus, for x=1 and y=0, we get  

      A’0 = (1/ |ϕ(C)|) H ϕ(C) (1,1)   

Further, let H ϕ(C) (x, y) = ∑ 𝐵′𝑚𝑛
𝑗=0 j   x

n – j yj, then  

      H ϕ(C) (1,1) =  ∑ 𝐵′𝑛
𝑗=0 j = number of code words in ϕ(C) =|ϕ(C)|. 

A’0 = (1/ |ϕ(C)|) H ϕ(C) (1,1) = (1/ |ϕ(C)|) |ϕ(C)| =1. 

Next, we discuss the main result. 

Theorem 4.2. Let C be a linear code of length n over Zq, and let t (>1) be 

a positive divisor of q and a prime power. Then the linear code C has a 

MacWilliams type identity on the wt_SKE over Zq with the form  

(11)  SKEC
⊥ (x, y) = (1 /|C|) SKEC (x + (t− 1). y, x − y)    

if and only if the following conditions are satisfied 

1. there exists a bijective map ϕ from (Zq)
n to (Ft)

m×m)n and the map ϕ is a 

weight preserving map from ((Zq)
n, wt_SKE) to ((Ft)

m)n, wt_H); 

2. there exists a code C’ of length m2.n over Ft and the MacWilliams 

transform HC’ (x, y) of H ϕ(C) (x, y) satisfies H ϕ(C
⊥

) (x, y) = HC’ (x, y). 
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Proof: The following proof is exactly on the lines of the proof for 

corresponding Theorem 4.2 of the paper3 for MacWilliams Identities on the 

Lee weights. 

First, suppose that the linear code C satisfies MacWilliams type identity (11)  

By Theorem 3.1, for the code C of length n over Zq and with wt_SKE, there 

is a one-to-one map ϕ so that code ϕ(C) is a code of length m2.n over Ft and 

the corresponding weight-enumerators satisfy 

(12)     SKEC (x, y) = H ϕ(C) (x, y).            

In eq. (12), ϕ(C) is a Hamming-weight code of length m2.n over Ft, whether 

linear or not.  However, even a nonlinear code satisfies MacWilliams-type 

identities [17]. Thus, for the Hamming-weight code ϕ(C), there exists a code 

C’ of length m2. n over Ft satisfying the equality 

(13)  HC’ (x, y) = (1/ |ϕ(C)|) H ϕ(C) (x + (t− 1) y, x − y).     

Similarly, for the code C⊥, by Theorem 3.1 

(14)     H ϕ(C
⊥

) (x, y) = SKEC
⊥ (x, y).        

Also, in the statement of the theorem, it is assumed that 

                           SKEC
⊥ (x, y) = (1 /|C|) SKEC (x + (t− 1). y, x − y)   

But by Theorem 3.1 

(15)                 SKEC (x + (t− 1). y, x − y) = H ϕ(C) (x + (t− 1) y, x − y)  

From (14), (11), and (15), we get 

(16)                      H ϕ(C
⊥

) (x, y) = (1 /|C|) H ϕ(C) (x + (t− 1) y, x − y)   

From (13) and (16) 

(17)    |ϕ(C)| HC’ (x, y) = |C| H ϕ(C
⊥

) (x, y),      

If Hc’ (x, y) = ∑ 𝐴𝑚×𝑚×𝑛
𝑖=0 i x

m×m×n –i. yi; Hϕ(C
⊥

) (x, y) = ∑ 𝐴𝑚×𝑚×𝑛
𝑖=0 ′i x

m×m×n –i. yi.  

By comparing the coefficients of xm×m×n
, obtained by taking i=0, we obtain 

          |ϕ(C)| A0 = |C| A’0                      

But by the above theorem, and the fact that if C is linear, then the code C⊥ is 

also linear, A0 = A’0 =1, each being number of code-words of weight 0, giving 

           |C| = |ϕ(C)|,  

and hence, by (17),  

         H ϕ(C
⊥

) (x, y) = HC’ (x, y). 

Conversely, let conditions 1. and 2. of the theorem be true and to establish 

(11)  

By condition 1. there exists a bijective map ϕ from (Zq)
n to ((Ft)

m×m)n  and the 

map ϕ is a weight preserving map from ((Zq)
 n, wt_SKE) to ((Ft)m×m) n, wt_H). 

As ϕ is a bijective map, |C| = |ϕ(C)| 
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Furthermore, for the Hamming-weight code ϕ(C), there exists a code C’ of 

length m2.n over Ft and the MacWilliams transform HC’(x, y) of H ϕ(C)(x, 

y)satisfying  

         HC’ (x, y) = (1/ |ϕ(C)|) H ϕ(C) (x + (t− 1). y, x − y). 

Using condition 2. in the statement of the theorem, viz,  

          HC’ (x, y) = H ϕ(C
⊥

) (x, y), we get 

H ϕ(C
⊥

) (x, y) = (1/ |ϕ(C)|) H ϕ(C)(x + (t − 1)y, x − y). 

Using condition 1. in the statement of the theorem, for each of the two sides 

of the above equality, we get 

SKEC
⊥ (x, y) = (1 /|ϕ(C)| SKEC (x + (t − 1) y, x − y)   

Using |C| = |ϕ(C)|, we get 

SKEC
⊥ (x, y) = (1 /|C|) SKEC (x + (t− 1). y, x − y). 

Thus, from the theorem we get a necessary and sufficient condition for the 

existence of a MacWilliams type identity on the SKE-weight enumerator for 

linear codes over Zq. 

 

5. Potential Applications 

 

The results in the investigation have the potential for (i) discovering 

properties of the symmetric PSK codes with very large number of code words 

through corresponding properties for the symmetric PSK-codes with 

(generally very) small number of code words for various metrics, (ii) 

improving the wireless LAN standard IEEE 802.11b-1999 (iii) improving 

functioning of MANET, VANET & other networks. 

 

4. Conclusion  
 

 We have extended MacWilliams identities—already established for 

Linear codes for (i) Hamming metrics1, (ii) Lee metrics3, and (iii) SK-metrics2 

to the case of Sharma-Kaushik-Euclidean metric (SKE-metric). Apart from 

theoretical significance of the results, these have potential for applications for 

improving the functioning of (i) the wireless LAN standard IEEE 802.11b-

1999, and (ii) MANET, VANET & other networks. 

Dedication: This research article is dedicated to the profound memory of (Late) 

Prof. P.N. Pandey, the founder General secretary of IAPS, who actually inspired us 

for active academic activities including writing of this paper. 
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