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Abstract @ In_ this paper the totally geodesic_ affine immersions
Fi (M, V) > (M, V) are studied in the case when (M, V) is an affine locally
product manifold of recurrent curvature. It is proved that (Af, V) is flat or of recurrent
curvature.

1. Preliminaries

Let (M, V) and (EJ___, -V_) be connected differentiable manifolds with torsion free
affine connection V and V with a2 Riemannian metric g and g respectively. Then Gauss
and Wiengarten formulae given by

(1.1) (@ VyY=VyeY+BMX,Y), (0)VyV=-d,X+DyV

forallx, ye TMand V & T M, where V, V and D are respectively the Riemannian,
induced Riemannian and induced connections in M, M and the normal bundle of T*Af of
M respectively. B is the second fundamental form related to 4 by g(B(X, Y), U)
=g(4 yX, Y)

The submanifold M of M is known to be
(i) totally geodesic in M if B=0.
(i) minimal if y = Trace (8 )/ Dim (M) =0, and
(iii) totally umblical if B(Y, ¥) = g(X, ¥Y)u, X, ¥ € TM.
Fundamental Gauss and Codazzi equations for the affine immersion can be written

as follows :

(12) RU,Y)Z=RW.Y)Z + dgx. 7Y - Apiy 1 X

X + (VXB)(Y, Z) - (VYB)(X, Z),
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13 R, Y)V:(VYA)VX-(VXA)VY+B(AVX, Y)

_B(X, Ay Y) FRIX, VYV

for vector fields X, ¥ and Z tangent to M. Taking the normal component of (1.1a) we
obtain the equation of Codazzi as

(1.4) ®Re, N2 = (Ve 8)@, 2) - (Vy B) @, 2).
For a submanifold M of a locally product Riemannian manifold M we put

FX=tX+fX and FV=hV+sV

where ¢ X is the tangential part of FX and fX the normal part of FX Then ¢ is an
endomorphism of the tangent bundle TM and fis a normal bundle value 1-form on the
tangent bundle. In this case

(1.5) P2X=X-WX, X+ sfX=0,
(1.6) sIV =V, thV + sV = 0.
The covariant derivatives V B and Vy 4 are defined by

(1.7) Vy B(Y, Z) = Dy(B(Y, Z)) - B(VXY, z) - B(Y, Yy z)

(1.8) (VXA)VY=VXAVY-AV VyY-dp Y.

2. Riemannian Product Immersion

Let M™ and M" be Riemannian manifolds of dimension m and n respectively. We
consider the product manifold M = M™ x M" of dimension m + n, then M admits the
product structure tensor field F such that F 2 = 1, where I the identity tensor and
g(FX, YY=g(X, FY)forany vector field X and V' on M.

Let M be a k-dimensional submanifold of M . If ¥ T, (M) c T, (M) for each point
x of M, then M is said to be an F-invariant in M. Let Mbe a locally decomposable
Riemannian manifold, e GX F = 0. If M is an F-invariant submanifold of a locally
decomposable Riemannian manifold M, then (Vy F)¥ =0 and sB(X, V)
= B{X, fY). Then we have
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Thegrem 2.1 : Let M be an F-invariant submanifold of a Riemannian product
manifold M = M™ x M". Then M is a Riemannian product manifold MP x M7 where
MP is a submanifold of M™ and MY is a submanifold of M™, MP and M9 being both
totally geodesic in M.

We denote by the same F the almost product structure on M, we now define the
curvature tensor R! of the normal bundie of M by

(2.1) RY(X, ¥) =Dy Dy - Dy Dy - Dy v

If R'=0, the normal connexion of M is said to be flat. It is well known that
R' =0 if and only if we can choose an orthonormal frame {V, } of the normal bundle
T M1 such that Dy = 0 forall a

Lemma 2.2 : Let M be an F invariant submanifold of a locally Riemannian
product manifold M=M"x M" If the normal connection of M is flat, then the
normal connection of MP in M™ and that of M9 in M" are both Sflat, where
M= MPx MY,

Proof : Let ¥ be a vector field in TMP ! in M™. We can suppose that
Te(M") = {X ¢ Ty() : Fx = X}
For any vector field X tangent to A{, we have
FDyV=FVyV+FAy X=V,FV+Fd, X
= —Apy X + Dy FV + FAy X = Dy ¥

becuase FV = V. Therefore, if ¥ € TMP? ! then DyV = TMP ! which means that
TMP ! is parallel. From this we see that the normal connection of M7 in M™ is flat.
Similarly, we can see that the normal connection of M7 in M” is also flat. We assume
that " and M" are complex space forms with constant sectional curvature ¢; and ¢,
and denote them by | M" (cy) and M" (cy) respectively. Let M be an F-invariant
submanifold of M = M Mep) x M" (c;). We denote by R the Riemannian curvature
tensor of M. Then the Gauss equation of A is given by

(22) R, Y)Z= % (c, + c2j[g-(y, ZYX —g(X, Z)Y + g(tY, Z)1 X

—gX, Z)tY + 2g (X, 1Y)Y1Z + g(FY, Z)FX

- g(FX, ZYFY + g(FtY, Z)FtX - g(FtX, Z) FtY
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+ 2g(FX, tY)FiZ] + 1—16 (c, - cz)[g(FY, X
- g(FX, Z)Y + g(¥, Z)FX - g(X, Z)FY + g(FX, 2) X
- G(FIY, Z)IY + g(tY, Z)FIX - gX, Z) FtY + 2g(FX, tY)1Z
+ 28(X, tY)HZ] + Ag(Y, Z)X 4B (X, Z) Y.
and the Codazzi equation by
@.3) (VX B)(Y, Z) - (VY B)(X, Z)
- %(cl + & ) [gWY, Z)/X - g, Z)[Y + 2(X, ¥)fZ
+ g(FtY, ZYFfX - g(FtX, ZYFfY + 2g(FX, 1Y) FfZ]
+ %(q - cz)[g(Ft Y, Z)fX - gFtX, Z)fY + g(tY, Z) EfX
~ gt X, ZYFfY + 20(FX, tY)fZ + 2g(X, t Y)fFZ].

3. Totally Geodesic Immersion

Since for a totally geodesic immersion EX Y = VY, the Gauss equation becomes

(3.1) R, Y)Z-= 1—]6-((:1 + cz)[g(Y, Z)X - gX, Z) ¥
+8UY,Z)tX - gt X,Z)tY + 2g(X, 1Y)t Z + g(FY,Z)F X
~ 8FX, Z)FY + g(FtY, ZYFtX - g(FtX, Z)FtY
+ 28(FX, tY)FtZ) + Il‘g(cl - cz)[g(FY, Z)YX - g(FX, Z) ¥
+ &5, Z)FX = gX, Z)YFY + gFtX, Z)tX - g(Ft ¥, Z)t¥
+ g(tY, ZYF1X - gt X, Z) FtY + 2g(FX, i¥)tZ

+ 28X, Y)Y Z]).
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In this case the Ricci Tensor S of M is given by
3.2) S, Y)=1—16(c1+c:2)[(k—2)g(X, Y)Y+ g(FX, Y)YTIrF

+ 6g(t X, (YY) + —]]—é(c] - cz)[(k -2)g(FX, V)

+ g(X, Y)TrF + 6g(Ft X, tY)].

Assume that fis an affine immersion. We define covariant derivative V24 by

3.3) (Vy 4), w=(vx(v, 4)), w- (Vor 4), ¥

for arbitrary vector fields X, ¥, Z W tangent to M and ¥ a normal vector field. After a
simple calculation we have

(.4) (Vf\,}, A)V W - (Vf,X A)V W=@RW, YAy, W

(3.5) (V}"(YA)V W=VyVydy WeVydypVy W

‘VXADYV W—-Vydy Ve W+ A, Vy Ve W
+Ap,y Vx W = Vy Ap v W + Ap, .y Vy W + Ay Vy vy W
In consequence of (3.5} we have

(3.6) R, Y)A), W=R(X, Y)A, W-A,R(X, Y)W ~ 4 W

R'x.myv

Theorem 3.1 ; We have

(3.7) RX,Y)Z=R(X, VZ.
68 RNV =-(V,4) Y+ (Vyd) X+ RIK D).
‘ V
Tlleorem 3.2 : For a totally geodesic immersion

(3.9) (VW'E) X, 1)Z = (VW R) X, V)2
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(3.10) (?WE) (X, )V =QRE, V')A W+ 4y R(X, 1YW

- (v XA) Y+ (V%,,YA)VX+ (VWR;) X, Y)YV,
Proof : The relation is a direct consequence of formulae and
(Vw R) (X, NZ=VyRE, 1)Z —E(VWX, Y)z
-E(X, Vi Y)W _R(X, V)V, Z
=V R, NZ-R(Vy X, Y)Z- R(X, Vi Y)W

~RX,Vp Z= (VW R) &, 2z,

Using V, Y = V%, (3.4) and (1.1b), we get

and

Vy R, 1)V

I

ﬁw((vy A)VX- (VX A)V Y+ R! (%, Y)V)

VW(VY A)VX - VW(VX A)V Y+ V(R X, 1) V)

v X-v,(V ) -
VW( YA)V W(XAVY Agtx ryr W

+ Dy RY(X, V)V
R(Tw X, ¥)V =R(Vp x, )V
r4),

_ [VVWX AJV Y+ R'(Vy X, Y)V
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R(X, V)V, V=R(X, Y)VyV

il

R, ) (- Ay W + Dy V) by (1.2)

-RX, Y)Ap W+ R(X, Y)DyV

-RO, V) Ay W+ (Vy 4) Dy V¥
- (g A)DWVY + RV(X, Y)DyV
Applying the above and (3.4) to the formulae
(VW E)(X, Y)V = VyRE, V)V - E(VWX, Y) V- E(X, Yy Y) v
~RW, V)V ¥ = Vy(Vyd) X - VW(VXA)V Y
4 u(v e Y)+D R'(x Y)V—(v A) Dy X
— 4R Wt W ’ - Y v W
+ (Vg o A Y-R'(V X, v\v-(ve ,4) X
( VX )V 4 ) ( V¥ )V
+ (VXA)VVWY -RY(X, Yy A)V + RO, YAy W
X Y-Rr'
-(V,,A)DXV +(VXA)DXV W, Y)Dy ¥
_ (2 2 3
= R(X, V) Ay W (VWXA)V Y+ (Viy 4) X
— iy yyy W+ (DWRl)(X, Yyv.
= RO, YA, W+ Ay R(X, Y)W - (V%VXA]V ¥
+(Vhya) X+ (VyR')&, DV byG6)
Theorem 3.3 : Assume that f: (M, V) = (ﬂ V) is a totally geodesic affine
immersion and (M V) is an affine locally decomposable Riemannian manifold of

recurrent curvature sdy VR = ¢ x R then (M, V) is (a) flat or (b} of recurrent
curvature, precisely VR = ¢ x R, ¢ being the pull back of the recurrence § onto M.

Proof is obvious.
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Let f be an affine immersion. For a 1-form p on the normal bundle MM) and its
first and second covariant derivatives with respect to the connection D are defined by

-

(Dx #) ) = X = oDy ¥),

2
(P%r o) =0x(Py 0) = Doy s
respectively. Assuming R ! X, 7= Dixy p - Dirx p, we obviously have :

Theorem 3.4 : If the second derivative of the normal connection is symmetric, then
the curvature tensor of the normal connection of M vanish identically.

If fis umblical i.e., A (V) = p (V) { for certain 1-form p, then

(Vx A)V r=(ox p)"7, (Vﬁ(}, A)V Z-= (D}n, p)(V)Z
and
R, VVA)y Z = (R’(X, Y) p)(V)z.

Proposition 31 Let f: (M, V) - (A_J —VH) be a totally geodesic affine

immersion, where (M V) is an affire locally product Riemannian manifold of recurrent
curvature, say VR = o ® R, then we have

(.11) Ay RO, Y)W = - R, Y)A), W - (V%,,Y A)VX
+(Vhy 4), Y+ o) ((vy 1), x-(vx 4), 1)

(3.12) (DW R‘) X, VYV =0(@R\ (X, )V

In particular when f is additionally umblical then
G13) PR, NW=-(R'&. ) Y - ((Dhy p)))

-0 (Dy p) X+ ((Dhx 0) ) -00m(Dy p) )Y
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Proof : (3.11) and (3.12) are consequences of the formulae %_X Y = V,Y (3.6) and
the assumption VR = § ® R. In this case (R(X, Y)4)y Z = (R Y'oe, nNpNH 2z
becomes (3.13).

We shall study the existence of a certain class of f invariant submanifold in a
complex space form of non-null holomorphic sectional curvature.

A proper F invariant submanifold M of a locally product Riemannian manifold M
is a F invariant with both distributions V and V7 of non-null dimensions. Also M is
totally umblical if there exists a normal vector field L such that the second fundamental
form B satisfies B (X, ¥) = g(X, Y) L, for any vector fields X, Y tangent to 3.

Now we propose :
Theorem 3.5 : There exists no totally umblical proper F invariant submanifolds of
an elliptic or hyperbolic complex space.

Proof : Suppose there exists a totally umblical proper F-invariant submanifold M of
a complex space form M(¢; # 0, ¢ # 0). Let Xand ¥ be two non-null vector field,
from V and D respectively then, for the normal part of R(X, FX)Y, we get
[R(X, FX)Y ]f_:t 0. On the other hand, since M is totally umblical, the Codazzi-
equations give [R(X, FX) Y = g(FX, Y)DyL - g(X, Y)DpyL = 0. Thus, we
get a contradiction. This completes the proof.
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