On Totally Geodesic Affine Immersion in Locally Product Riemannian Manifolds

J. P. Srivastava and Sudershan Khajuria

Department of Mathematics, University of Jammu, Jammu, India.

(Received December 14, 1997)

Abstract: In this paper the totally geodesic affine immersions $f:(M, \nabla) \to (M, \overline{\nabla})$ are studied in the case when $(M, \overline{\nabla})$ is an affine locally product manifold of recurrent curvature. It is proved that (M, ∇) is flat or of recurrent curvature.

1. Preliminaries

Let (M, ∇) and $(\overline{M}, \overline{\nabla})$ be connected differentiable manifolds with torsion free affine connection ∇ and $\overline{\nabla}$ with a Riemannian metric g and \overline{g} respectively. Then Gauss and Wiengarten formulae given by

(1.1) (a)
$$\overline{\nabla}_X Y = \nabla_X Y + B(X, Y)$$
, (b) $\overline{\nabla}_X V = -A_V X + D_X V$

for all $x, y \in TM$ and $V \in T^{1}M$, where $\overline{\nabla}$, ∇ and D are respectively the Riemannian, induced Riemannian and induced connections in \overline{M} , M and the normal bundle of $T^{1}M$ of M respectively. B is the second fundamental form related to A by $g(B(X, Y), U) = g(A_{II}, X, Y)$.

The submanifold M of \overline{M} is known to be

- (i) totally geodesic in \overline{M} if B = 0.
- (ii) minimal if $\mu = \text{Trace } (B) / \text{Dim } (M) = 0$, and
- (iii) totally umblical if $B(X, Y) = g(X, Y) \mu, X, Y \in TM$.

Fundamental Gauss and Codazzi equations for the affine immersion can be written as follows:

(1.2)
$$\overline{R}(X,Y)Z = R(X,Y)Z + A_{B(X,Z)}Y - A_{B(Y,Z)}X + \left(\nabla_X B\right)(Y,Z) - \left(\nabla_Y B\right)(X,Z),$$

(1.3)
$$\overline{R}(X, Y) V = \left(\nabla_{Y} A\right)_{V} X - \left(\nabla_{X} A\right)_{V} Y + B\left(A_{V} X, Y\right)$$
$$-B\left(X, A_{V} Y\right) + R^{1}(X, Y) V$$

for vector fields X, Y and Z tangent to M. Taking the normal component of (1.1a) we obtain the equation of Codazzi as

$$(1.4) (\overline{R}(X, Y)Z)^{1} = (\overline{\nabla}_{X} B)(Y, Z) - (\overline{\nabla}_{Y} B)(X, Z).$$

For a submanifold M of a locally product Riemannian manifold \overline{M} we put

$$FX = tX + fX$$
 and $FV = hV + sV$

where $t \, X$ is the tangential part of FX and fX the normal part of FX. Then t is an endomorphism of the tangent bundle TM and f is a normal bundle value 1-form on the tangent bundle. In this case

(1.5)
$$t^2 X = X - hfX, ftX + sfX = 0,$$

(1.6)
$$s^2 V = V - fhV, thV + hsV = 0.$$

The covariant derivatives $\nabla_X B$ and $\nabla_X A$ are defined by

$$(1.7) \nabla_X B(Y, Z) = D_X(B(Y, Z)) - B(\nabla_X Y, Z) - B(Y, \nabla_X Z)$$

$$(1.8) \qquad \left(\nabla_X A\right)_V Y = \nabla_X A_V Y - A_V \nabla_X Y - A_{D_X V} Y.$$

2. Riemannian Product Immersion

Let \overline{M}^m and \overline{M}^n be Riemannian manifolds of dimension m and n respectively. We consider the product manifold $\overline{M} = \overline{M}^m \times \overline{M}^n$ of dimension m + n, then \overline{M} admits the product structure tensor field F such that $F^2 = I$, where I the identity tensor and g(FX, Y) = g(X, FY) for any vector field X and Y on \overline{M} .

Let M be a k-dimensional submanifold of \overline{M} . If $FT_x(M) \subset T_x(M)$ for each point x of M, then M is said to be an F-invariant in \overline{M} . Let \overline{M} be a locally decomposable Riemannian manifold, i.e. $\overline{\nabla}_X F = 0$. If M is an F-invariant submanifold of a locally decomposable Riemannian manifold \overline{M} , then $(\nabla_X F) V = 0$ and sB(X, Y) = B(X, fY). Then we have

Theorem 2.1: Let M be an F-invariant submanifold of a Riemannian product manifold $\overline{M} = \overline{M}^m \times \overline{M}^n$. Then M is a Riemannian product manifold $M^p \times M^q$ where M^p is a submanifold of \overline{M}^m and M^q is a submanifold of \overline{M}^n , M^p and M^q being both totally geodesic in \overline{M} .

We denote by the same F the almost product structure on M, we now define the curvature tensor R^1 of the normal bundle of M by

(2.1)
$$R^{1}(X, Y) = D_{X} D_{Y} - D_{Y} D_{X} - D_{[X, Y]}.$$

If $R^1=0$, the normal connexion of M is said to be flat. It is well known that $R^1=0$ if and only if we can choose an orthonormal frame $\{V_a\}$ of the normal bundle TM^1 such that $D_V=0$ for all a.

Lemma 2.2: Let \overline{M} be an F invariant submanifold of a locally Riemannian product manifold $\overline{M} = \overline{M}^m \times \overline{M}^n$. If the normal connection of M is flat, then the normal connection of M^p in \overline{M}^m and that of M^q in \overline{M}^n are both flat, where $M = M^p \times M^q$.

Proof: Let V be a vector field in $TM^{p,1}$ in \overline{M}^m . We can suppose that

$$T_X\left(\overline{M}^m\right) = \left\{X \in T_X(\overline{M}) : FX = X\right\}.$$

For any vector field X tangent to M, we have

$$F D_X V = F \overrightarrow{\nabla}_X V + F A_V X = \overrightarrow{\nabla}_X F V + F A_V X$$
$$= -A_{FV} X + D_X F V + F A_V X = D_X V$$

becuase FV = V. Therefore, if $V \in TM^{p-1}$, then $D_X V = TM^{p-1}$ which means that TM^{p-1} is parallel. From this we see that the normal connection of M^p in \overline{M}^m is flat. Similarly, we can see that the normal connection of M^q in \overline{M}^n is also flat. We assume that \overline{M}^m and \overline{M}^n are complex space forms with constant sectional curvature c_1 and c_2 and denote them by $\overline{M}^m(c_1)$ and $\overline{M}^n(c_2)$ respectively. Let M be an F-invariant submanifold of $\overline{M} = \overline{M}^m(c_1) \times \overline{M}^n(c_2)$. We denote by R the Riemannian curvature tensor of M. Then the Gauss equation of M is given by

(2.2)
$$R(X, Y)Z = \frac{1}{16} \left(c_1 + c_2 \right) [g(Y, Z)X - g(X, Z)Y + g(tY, Z)tX - g(tX, Z)tY + 2g(X, tY)tZ + g(FY, Z)FX - g(FX, Z)FY + g(FtY, Z)FtX - g(FtX, Z)FtY$$

$$+ 2g(FX, tY) FtZ] + \frac{1}{16} (c_1 - c_2) [g(FY, Z) X$$

$$- g(FX, Z) Y + g(Y, Z) FX - g(X, Z) FY + g(FtX, Z) tX$$

$$- g(FtY, Z) tY + g(tY, Z) FtX - g(tX, Z) FtY + 2g(FX, tY) tZ$$

$$+ 2g(X, tY) tfZ] + A_B (Y, Z)^{X-A} B(X, Z)^{Y}.$$

and the Codazzi equation by

(2.3)
$$\left(\nabla_{X} B\right)(Y, Z) - \left(\nabla_{Y} B\right)(X, Z)$$

$$= \frac{1}{16} \left(c_{1} + c_{2}\right) [g(tY, Z)fX - g(tX, Z)fY + 2g(X, tY)fZ]$$

$$+ g(FtY, Z) FfX - g(FtX, Z) FfY + 2g(FX, tY) FfZ]$$

$$+ \frac{1}{16} \left(c_{1} - c_{2}\right) [g(FtY, Z)fX - g(FtX, Z)fY + g(tY, Z) FfX]$$

$$- g(tX, Z) FfY + 2g(FX, tY) fZ + 2g(X, tY) fFZ].$$

3. Totally Geodesic Immersion

Since for a totally geodesic immersion $\overline{\nabla}_X Y = \nabla_X Y$, the Gauss equation becomes

(3.1)
$$R(X, Y)Z = \frac{1}{16} (c_1 + c_2) [g(Y, Z)X - g(X, Z)Y]$$

 $+ g(tY, Z)tX - g(tX, Z)tY + 2g(X, tY)tZ + g(FY, Z)FX$
 $- g(FX, Z)FY + g(FtY, Z)FtX - g(FtX, Z)FtY$
 $+ 2g(FX, tY)FtZ] + \frac{1}{16} (c_1 - c_2) [g(FY, Z)X - g(FX, Z)Y]$
 $+ g(Y, Z)FX - g(X, Z)FY + g(FtX, Z)tX - g(FtY, Z)tY$
 $+ g(tY, Z)FtX - g(tX, Z)FtY + 2g(FX, tY)tZ$
 $+ 2g(X, tY)tfZ].$

In this case the Ricci Tensor S of M is given by

(3.2)
$$S(X, Y) = \frac{1}{16} \left(c_1 + c_2 \right) [(k - 2)g(X, Y) + g(FX, Y) TrF + 6g(tX, tY)] + \frac{1}{16} \left(c_1 - c_2 \right) [(k - 2)g(FX, Y) + g(X, Y) TrF + 6g(FtX, tY)].$$

Assume that f is an affine immersion. We define covariant derivative $\nabla^2 A$ by

(3.3)
$$\left(\nabla_{XY}^2 A \right)_V W = \left(\nabla_X \left(\nabla_Y A \right) \right)_V W - \left(\nabla_{\nabla_X Y} A \right)_V W$$

for arbitrary vector fields X, Y, Z, W tangent to M and V a normal vector field. After a simple calculation we have

$$(3.4) \qquad \left(\nabla_{XY}^2 A\right)_V W - \left(\nabla_{YX}^2 A\right)_V W = (R(X, Y)A)_V W$$

$$(3.5) \qquad \left(\nabla_{XY}^{2} A\right)_{V} W = \nabla_{X} \nabla_{Y} A_{V} W - \nabla_{W} A_{V} \nabla_{Y} W$$

$$- \nabla_{X} A_{D_{Y}V} W - \nabla_{Y} A_{V} \nabla_{X} W + A_{V} \nabla_{Y} \nabla_{X} W$$

$$+ A_{D_{Y}V} \nabla_{X} W - \nabla_{Y} A_{D_{X}V} W + A_{D_{X}V} \nabla_{Y} W + A_{V} \nabla_{\nabla_{X}Y} W$$

$$+ A_{D_{Y}D_{X}V} W - \nabla_{\nabla_{X}Y} A_{V} W + A_{D_{\nabla_{Y}Y}V} W .$$

In consequence of (3.5) we have

$$(3.6) \quad (R(X, Y)A)_V W = R(X, Y)A_V W - A_V R(X, Y) W - A_{R^1(X, Y)V} W$$

Theorem 3.1: We have

$$(3.7) \overline{R}(X, Y)Z = R(X, Y)Z.$$

$$(3.8) \overline{R}(X,Y)V = -\left(\nabla_X A\right)_V Y + \left(\nabla_Y A\right)_V X + R^1(X,Y)V.$$

Theorem 3.2: For a totally geodesic immersion

(3.9)
$$\left(\overline{\nabla}_{W} \overline{R}\right) (X, Y) Z = \left(\nabla_{W} R\right) (X, Y) Z$$

(3.10)
$$\left(\overline{\nabla}_{W} \overline{R} \right) (X, Y) V = (R(X, Y) A)_{V} W + A_{V} R(X, Y) W$$

$$- \left(\nabla^{2}_{WX} A \right)_{V} Y + \left(\nabla^{2}_{WY} A \right)_{V} X + \left(\nabla_{W} R^{1} \right) (X, Y) V.$$

Proof: The relation is a direct consequence of formulae and

$$\left(\overline{\nabla}_{W} \overline{R} \right) (X, Y) Z = \overline{\nabla}_{W} \overline{R} (X, Y) Z - \overline{R} \left(\overline{\nabla}_{W} X, Y \right) Z$$

$$- \overline{R} \left(X, \overline{\nabla}_{W} Y \right) W - \overline{R} (X, Y) \overline{\nabla}_{W} Z$$

$$= \nabla_{W} R (X, Y) Z - R \left(\nabla_{W} X, Y \right) Z - R \left(X, \nabla_{W} Y \right) W$$

$$- R (X, Y) \nabla_{W} Z = \left(\nabla_{W} R \right) (X, Y) Z.$$

Using $\nabla_{Y} Y = \nabla_{X} Y$, (3.4) and (1.1b), we get

$$\begin{split} \overline{\nabla}_{W} \ \overline{R} \left(X, \ Y \right) V &= \overline{\nabla}_{W} \left(\left(\nabla_{Y} \ A \right)_{V} X - \left(\nabla_{X} \ A \right)_{V} Y + R^{1} \left(X, \ Y \right) V \right) \\ &= \nabla_{W} \left(\nabla_{Y} \ A \right)_{V} X - \nabla_{W} \left(\nabla_{X} \ A \right)_{V} Y + \overline{\nabla}_{W} \left(R^{1} \left(X, \ Y \right) V \right) \\ &= \nabla_{W} \left(\nabla_{Y} \ A \right)_{V} X - \nabla_{W} \left(\nabla_{X} \ A \right)_{V} Y - A_{R^{1} \left(X, \ Y \right) V} W \\ &+ D_{W} \ R^{1} \left(X, \ Y \right) V \end{split}$$

and

$$R\left(\overline{\nabla}_{W} X, Y\right) V = \overline{R}\left(\nabla_{W} X, Y\right) V$$

$$= \left(\nabla_{Y} A\right)_{V} \nabla_{W} X - \left(\nabla_{\nabla_{W} X} A\right)_{V} Y + R^{1}\left(\nabla_{W} X, Y\right) V$$

$$\overline{R}\left(X, \overline{\nabla}_{W} Y\right) V = \overline{R}\left(X, \nabla_{W} Y\right) V$$

$$= \left(\nabla_{\nabla_{W} Y} A\right)_{V} X - \left(\nabla_{X} A\right)_{V} \nabla_{W} Y + R^{1}\left(X, \nabla_{W} Y\right) V$$

$$\overline{R}(X, Y) \overline{\nabla}_{W} V = \overline{R}(X, Y) \nabla_{W} V$$

$$= \overline{R}(X, Y) \left(-A_{V} W + D_{W} V \right) \quad \text{by (1.2)}$$

$$= -\overline{R}(X, Y) A_{V} W + \overline{R}(X, Y) D_{W} V$$

$$= -\overline{R}(X, Y) A_{V} W + \left(\nabla_{Y} A \right) D_{W} V^{X}$$

$$- \left(\nabla_{X} A \right) D_{W} V^{Y} + R^{1}(X, Y) D_{W} V$$

Applying the above and (3.4) to the formulae

$$(\overline{\nabla}_{W} \overline{R})(X, Y) V = \overline{\nabla}_{W} \overline{R}(X, Y) V - \overline{R}(\overline{\nabla}_{W} X, Y) V - \overline{R}(X, \overline{\nabla}_{W} Y) V$$

$$- \overline{R}(X, Y) \overline{\nabla}_{W} V = \nabla_{W}(\nabla_{Y} A)_{V} X - \nabla_{W}(\nabla_{X} A)_{V} Y$$

$$- A_{R^{1}}(\nabla_{W} X, Y) + D_{W} R^{1}(X, Y) V - (\nabla_{Y} A)_{V} D_{W} X$$

$$+ (\nabla_{\nabla_{W} X} A)_{V} Y - R^{1}(\nabla_{W} X, Y) V - (\nabla_{\nabla_{W} Y} A)_{V} X$$

$$+ (\nabla_{X} A)_{V} \nabla_{W} Y - R^{1}(X, \nabla_{W} A) V + R(X, Y) A_{V} W$$

$$- (\nabla_{Y} A) D_{X} V^{X} + (\nabla_{X} A) D_{X} V^{Y-R^{1}}(X, Y) D_{X} V$$

$$= R(X, Y) A_{V} W - (\nabla_{W}^{2} X A)_{V} Y + (\nabla_{W}^{2} Y A)_{V} X$$

$$- A_{R^{1}(X, Y) V} W + (D_{W} R^{1})(X, Y) V.$$

$$= (R(X, Y) A)_{V} W + A_{V} R(X, Y) W - (\nabla_{W}^{2} X A)_{V} Y$$

$$+ (\nabla_{W}^{2} Y A)_{V} X + (\nabla_{W} R^{1})(X, Y) V \quad \text{by (3.6)}.$$

Theorem 3.3: Assume that $f:(M,\nabla)\to(\overline{M},\overline{\nabla})$ is a totally geodesic affine immersion and $(\overline{M},\overline{\nabla})$ is an affine locally decomposable Riemannian manifold of recurrent curvature say $\overline{\nabla}\,\overline{R}=\overline{\phi}\times\overline{R}$ then (M,∇) is (a) flat or (b) of recurrent curvature, precisely $\nabla R=\phi\times R$, ϕ being the pull back of the recurrence $\overline{\phi}$ onto M.

Proof is obvious.

Let f be an affine immersion. For a 1-form ρ on the normal bundle N(M) and its first and second covariant derivatives with respect to the connection D are defined by

$$(D_X \ \rho)(V) = X(\rho(V)) - \rho(D_X V),$$

$$\left(D_{XY}^{2} \rho\right) = D_{X}\left(D_{Y} \rho\right) - D_{\nabla_{X}Y}f$$

respectively. Assuming $R^{1}(X, Y) = D^{2}XY\rho - D^{2}YX\rho$, we obviously have:

Theorem 3.4: If the second derivative of the normal connection is symmetric, then the curvature tensor of the normal connection of M vanish identically.

If f is umblical i.e., $A(V) = \rho(V)I$ for certain 1-form ρ , then

$$\left(\nabla_{X} \ A \right)_{V} Y = \left(D_{X} \ \rho \right) (V) Y, \\ \left(\nabla_{XY}^{2} \ A \right)_{V} Z = \left(D_{XY}^{2} \ \rho \right) (V) Z$$

and

$$(R(X, Y)A)_{V}Z = (R^{1}(X, Y) \rho)(V)Z.$$

Proposition 3.1: Let $f:(M,\nabla)\to (\overline{M},\overline{\nabla})$ be a totally geodesic affine immersion, where (\overline{M},∇) is an affine locally product Riemannian manifold of recurrent curvature, say $\overline{\nabla} \, \overline{R} = \overline{\Phi} \otimes \overline{R}$, then we have

$$(3.11) A_V R(X, Y) W = -(R(X, Y)A)_V W - \left(\nabla^2_{WY} A\right)_V X$$

$$+ \left(\nabla^2_{WX} A\right)_V Y + \phi(W) \left(\left(\nabla_Y A\right)_V X - \left(\nabla_X A\right)_V Y\right)$$

(3.12)
$$\left(D_W R^1 \right) (X, Y) V = \phi(W) R^1 (X, Y) V$$

In particular when f is additionally umblical then

$$(3.13) \qquad \rho(V)R(X, Y)W = -\left(R^{1}(X, Y)\rho\right)(V)(W) - \left(\left(D_{WY}^{2}\rho\right)(V)\right)$$
$$-\phi(W)\left(D_{Y}\rho\right)(V)X + \left(\left(D_{WX}^{2}\rho\right)(V)\right) - \phi(W)\left(D_{X}\rho\right)(V)Y$$

Proof: (3.11) and (3.12) are consequences of the formulae $\overline{\nabla}_X Y = \nabla_X Y$, (3.6) and the assumption $\overline{\nabla}_{R} = \overline{\phi} \otimes \overline{R}$. In this case $(R(X, Y)A)_V Z = (R^1(X, Y)\rho)(V)Z$ becomes (3.13).

We shall study the existence of a certain class of f invariant submanifold in a complex space form of non-null holomorphic sectional curvature.

A proper F invariant submanifold M of a locally product Riemannian manifold M is a F invariant with both distributions ∇ and ∇^T of non-null dimensions. Also M is totally umblical if there exists a normal vector field L such that the second fundamental form B satisfies B(X, Y) = g(X, Y)L, for any vector fields X, Y tangent to M.

Now we propose:

Theorem 3.5: There exists no totally umblical proper F invariant submanifolds of an elliptic or hyperbolic complex space.

Proof: Suppose there exists a totally umblical proper F-invariant submanifold M of a complex space form $M(c_1 \neq 0, c_2 \neq 0)$. Let X and Y be two non-null vector field, from ∇ and D respectively then, for the normal part of $\overline{R}(X, FX)Y$, we get $[\overline{R}(X, FX)Y]^{\frac{1}{2}} \neq 0$. On the other hand, since M is totally umblical, the Codazzi equations give $[\overline{R}(X, FX)Y]^{\frac{1}{2}} = g(FX, Y)D_XL - g(X, Y)D_{FX}L = 0$. Thus, we get a contradiction. This completes the proof.

References

- 1. K. Nomizu and U. Pinkal: On the Geometry of Affine Immersions, Math. Z., 195 (1987) 165-178.
- 2. K. Nomizu and U. Pinkal: Cubic form theorem for Affine Immersions, Results in Math., 13 (1988) 338-362.
- 3. Zbigniew Olszak: On totally Geodesic Affine Immersions, Journal of Geometry, 47 (1993) 115-124.
- 4. K. Yano and M. Kon: Generic submanifolds of Kaehlerian product manifolds, J. T. S. of India, 1 (1983) 1-9.