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Abstract © Makoto Matsumoto® characterized his C"-recumrent Finsler space by the
condition ] )

(A Cikin = MCle ‘
where C is (A)hv-tarsion tensor and C ji|m is the h-covariant derivative of the tensor
C,’-}, . He studied the properties of such space specially whes it is h-isotropic. In this paper
we study a Finsler space satisfying the condition

(B) Cletnim = anm C
which is more general than the previous one. This space will be called as C"-birecurrent
space. We also study C".birecurrent spaces of scalar curvature and h- isotropic
¢"-birecurrent spaces.

1. Preliminaries

Let us consider an n-dimensional Finsler space F" equipped with the Cartan’s
Euclidean connection. Let us denote the fundamental function and the components of the
metric tensor by F(x', ') and 8jj respectively. If T } be an arbitrary tensor of type (1,1),
then its #-covariant derivative and v-covariant derivative are defined by

. o S 5 8
i — 1 ¥, 5 rT¥ * —_ — e—
(LD lek_a,,r;-(arrj)rs;y $TITH-TITY, %= g =
12) Til = 8Tj+ TjCli =~ T1Cx
 respectively, o, = % . ) = % The Ricci identities for the vector X’ are given by
(1.3) Xlgin = X{npe=X" R = X'\ Hip

where R !, are components of A-curvature tensor and H % are components of (v)A-torsion
tensor. These two tensors are connected by

(1.4) Rl y" = Hiyp.

The (v)h-torsion tensor and the deviation tensor of L. Berwald are connected by
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(1.5) Hiy/ =H}=-H,»
and
. lrs o o .
(1.6) Hiy = 5 (8 bk - 01} ). .

The {(v)A-torsion tensor and Berwald’s curvature tensor satisfy

17D @ O Hjy=Hpyy, ® Hipxy = Hipy
The (v)hv-torsion tensor is given by

(1.8) Piny’ =Pip=Chy,y’

where P }k » are components of Av-curvature tensor.

2. C*-birecurrent Spaces

Let us consider a C-recurrent Finsler space characterized by the condition (A}). The
h-covariant derivative of (A) gives

@ Clethim = %nm Che

where a,,, = 7\.;” m T M A, . Thus, we see that a C"-recurrent Finsler space satisfies
(B). Therefore the space is C"-birecurrent. Since the metric tensor gy is h-covariant
constant, the equation (2.1) is equivalent to

(2.2) Cikhim = %m Cy-

Conversely, if we assume the condition (2.2) which is equivalent to the
characterizing condition (B) of C"-birecurrent space, it does not imply the condition (A)
in general. Therefore the condition (B) is more general than (A). In this case, the
recurrence tensor need not be of the form 4, + Ay h,

Let us consider a C-birecurrent space characterized by (2.2) or equivalently by the
condition (B).

The transvection of (B) by ", in view of (1.8), gives

(23) P_;:k|m =ahm)/'C}k.

Now we propose :

Theorem 2.1 : A C'-birecurrent space is Ch_- recurrent if it is a *P-Finsler space
and ay,, oo Mm # O, where \ is defined by P}k = AC 1y

-k . w
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Proof : Let us consider a C-birecurrent space characterized by (2.2), which is also

a *P-Finsler space. For such space, we have the conditions Pj ¢ = AC } & and (2.3). From
these two conditions, we get

h
. ah m Yy - A | m ,
2.4) jim = Ci
which shows that the space is C'-recurrent provided ay, )/' - A‘im = 0.

Taking skew-symmetric part of (B) with respect to the indices # and m and using
the commutation formula (1.3), we have

(2.5) Ay Ch = ChRoym = CoiRipm = CioRim = Cigb Hhm

where 4, ,, = aj,,, — 4, ;- Contracting the indices / and j in (2.5) and putting C;, for
T &> we have

2.6) AymCie == CRipm = Ceh Hlym-

Due to skew-symmetry of R, in its first two indices, we have

o)) CoRYymC* = Rypm CTCY =0

where C* = gik C, . Transvecting (2.6) by C* and using (2.7), we have
(2.8) A, CC* = - C |, CxHYE,, .

Suppose that there exists a non-null covariant vector field A, such that
(2.9 AgHip + MHL + MH, =0,

Transvecting (2.8) by A, , taking skew- symmetric part with respect to the indices /, 4 and
m, and then using (2.9), we get

(2.10) (A,A,,m + A Apy + x,,Am,) C,C*=o.
This implies at least one of the following
@2.11) @ C.Ck=0, (b) MAy,, + Ay Ay + Aydy = 0.
The condition (2.11a) implies £, = 0, which in view of Deicke’s theorem® implies

that the-space is Riemannian. Thus, we see that if a C"-birecurrent space admits the
identity (2.9}, the space is either Riemannian or it admits (2.11b). Thus, we have :



46 P. N. Pandey and Reema Verma

Theorem 2.2 : If a CH_birecurrent space admits the identity (2.9), the space is
either Riemannian or it admits (2.11b). ,

Since an R”-recurrent space, a KP.recurrent space and H-recurrent space 49 admit
the identity (2.9), we may conclude

Corollary 2.1 : A C*-birecurrent space is either Riemannian or it admits (2.115)
provided it satisfies any one of the Jollowing

(i) it is an Rl-recurrent Finsler space,
(iiyitisa Ki-recurrent Finsler space,

(iii) it is an H-recurrent Finsler space.

If a C-birecurrent space satisfies the condition!! 7= 0 ie.
2
(212) T=F Chulk+ Cf(ljyh + Chkjyi + thkyj + C_'fihyk =0,

the transvection of (2.12) by g, and use of C, i &= C, and C, ki g= Chkjyj=0
give
(2.13) FIC =~ (Cewm+C

: h kY hYk)-

This reduces (2.6) to
(2.14) AymCh = = CRym + (Co i) Hi /F?

for y, HY, ,, = 0. Transvecting (2.14) by C* and using (2.7) and ck ¥ = 0, we have
A,,, C C* = 0, which gives either 4, = 0 of €, C* = 0. ¢, C¥ = 0 implies C; =
0; which in view of Deicke’s theorem® shows that the Finsler space is essentially
Riemannian. If the space is not Riemannian, we have A, = Gy — Gup = 0. Hence
(2.14) becomes

(2.15) —C,R;hm+% C,H},=0.
Thus, we have :

Theorem 2.3 : 4 C'-birecurrent space satisfying T=0 is either Riemannian or its
recurrence lensor is symmetric.

If the deviation tensor H ;, of a C-birecurrent space vanishes identically, in view of
(1.6), (2.8) reduces to 4, C; C k _ 0. This implies that either the space is Riemannian
or its recurrence tensor is symmetric. In the latter case, (2.6) reduces to

(2.16) C,R}, . = 0.

Thus, we have :

e
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Theorem 2.4 : A C'-birecurrent space with vanishing deviation tensor is either
Riemannian or ifs recurrence tensor is symmelric and the curvature tensor R}k , satisfies
(2.16).

The condi-tion H ;' = 0 implies H}, = 0, H}k 5 = 0 and Hy, = 0. Therefore
the well-known identity

Hype ¥ Hppe = 2(Phrj|k - Phr'k[j) ~2C, . H Y

reduces to

.17 Pyiik = Phik|j = 0;
which, in view of (2.3), givés

(2.18) ap ;¥ " Chiy =~ a3  Cpip = 0.

Transvecting (2.18) by y k and using C, . v k = 0, we have a.,y ’y"‘ C,".j. = 0; which
shows that either the space is Riemannian or a,, y Ty k= 0.1fthe space considered is not
Riemannian and B, = a_, y” # 0; (2.18) implies C, ;. = B, b,., where b, is a non-null
symmetric tensor. Due to symmetry of C, . in ~and /, we have B, b, .= B, by This gives
b, ; = By b;, which due to symmetry of by, implies b, = b Bhi},., wherte & is some
non-zero scalar. Thus, we have

(2.19) Cin = 5B BBy

Transvecting (2.19) by g¥ and putting g¥ B, Bj = |32 , we have C) = b Bz[ik. In
view of this fact, (2.19) may be written as erk =@ C,.C}Ck where @ = p 2 5“6.
Transvection of Cip = @ C, G Cp by g¥ gives @ CiC,. = 1. Putting C; Ci=C%we
get & = —» and hence
CZ

2
(2.20) CCijx = GGGy
A Finsler space F,(n > 2) for which the tensor Ciix satisfies (2.20) is called a C2-

like Finsler spacelz. Thus we have ;

Theorem 2.5 : If the deviation tensor of a C'- birecurrent Finsler space vanishes,
the space is either Riemannian or a,, y h y™ = 0. If this space is not Riemannian and
aymy b %0, the space is C 2-like,

From theorem (2.5) we observe that for a non-Riemannian space, the recurrence
tensor a,, satifies a yh ¥™ = 0. Partial differentiation of A m yiy™ = 0 with
respect to y © gives '

(2.21) (ékahm)yhym+akmym+ah_kyh = 0,
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Differentiating (2.21) partially with respect to 3/ we have
(2.22) @{ (aka,,,,,)y"y'"} + (ajakm)ym + (q,-ahk)yh +ay + a, =0
If the recurrence tensor a,, is independent of y /, (2.22) gives Gy + Ay = 0, i.e. the
recurrence tensor is skew-symmetric; which contradicts theorem 2.4.
Thus, we have :
Corollary 2.2 : 4 Ch-birecurrent space whose deviation tensor vanishes and

recurrence tensor is a function of positional coordinates only is necessarily Riemannian.

3. C".birecurrent Spaces of Scalar Curvature

Let us consider a C*-birecurrent space F, (n>2) of scalar curvature. This space
satisfies equations (2.1) to (2.8) together with the condition

@G.1) Hi = FIK@E, - Iy

which characterizes a Finsler space F, (n>2) of scalar curvature. From (3.1) we may
derive

62 Hiy= (8 - ) dk - (5 - i) ak ] + K| 18}, - 13}

Transvecting (2.8) by y" and using (1.5), (3.1), { f= y‘ / F, (1.2) and the fact that the
tensor C, is positively homogeneous of degree — 1 in y’, we have
k(Ahmyh + Kym) .

FK

(3.3) ChCt = - C,.C
From (2.8) and (3.3) we have
i CH(FKAy - A,y Hy) = 0.
This gives either of the two conditions
(3.4) (@) C,C*=0, b) FPKAp, = A,y Hipy

The condition (3.4a) implies C, = 0, which due to Deicke’s theorem implies that the space
is Riemannian. From (3.4b) and (3.2) we get

35 3K(Fdyp + Ay Y + A v yy) = F{d, " 0K - Ay OnK)

Thus, we conclude :

Theorem 3.1 : A C'-birecurrent Finsler space F, (n>2) of scalar curvature is
either Riemannian or satisfies (3.5).
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If the space considered is of constant curvature i.e. 5,,K =0, (3.5) reduces to’
BK(FZAh mt Ay iy, + A,y syh) = (. This gives at least one of the conditions

(3.6) @K =0 ) FPdyp + Agp ¥V + Ay vy = 0

If (3.62) holds, (3.1) becomes H} = 0; which in view of theorems 2.4 and 2.5
shows that either the space is Riemannian or the recurrence tensor is symmetric, the
curvature tensor satisfies (2.14) and if @, , " # 0, we have (2.20). Thus, we conclude :

Theorem 3.2 : A C-birecurrent Finsler space F, (n>2) of constant curvature is
either Riemannian or it satisfies at least one of the conditions

M K=0, Hi=0 a,_=a, a,»"y"=0 CRL, =0 and
Czcijk': C;C; Cy (provideda,, y" # 0},

(i) Fopy + Ay Vm + Ay vy = 0.

Let us consider a C*-birecurrent space F,, (n > 2) satisfying the condition

G R}kh=K(g;,-k8ﬂ,—gjh6i).

The space characterized by (3.7) is called A-isotropic. It is to be noted that the
concept of A-isotropy does not coincide with that of constant curvature due to Berwald!?,
For an h-isotropic space F, (n>2), X is constant (due to Akbar-Zadeh). Therefore X is
constant for the space considered. Transvecting (3.7) by y/, we get

(.8) Hy = K38 - y,,a;;).

Differ.entiating (3.8) partially \yith respect to y/ and using (1.7) and g = é,- Yp
we get Hj o= K( g8 - & n Sk ) which shows that the space is of constant
curvature. Thus, an A-isotropic Finsler space F,, (> 2) is of constant curvature. In view
of this fact and theorem 3.2, we find that an A-isotropic C-birecurrent Finsler space is
either Riemannian space of constant curvature or it satisfies any one of the two conditions
(i) and (ii) of theorem 3.2..Now we shall show that the condition (ii) implies X = 0. In
view of (3.7) and (3.8), (2.6) becomes

(3.9 ApmCi = K{= Cu&rin + Cu8m = Celw¥h *+ CilpYm}-

Transvecting (3.9) by y *, and using C.ly yh=- C, we get

~ kG + Com) — Ay ¥ G

F? '
Substituting (3.10) in (3.9), and using the condition (ii) of the theorem 3.2 we find either
K=0or '

(3.10) KCY, =
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G-11) Ch(gkm - ’klm) - Cm(gkh - *’k’h) = 0.

where [, = y/F. Transvecting this equation by g, we get (n -2) C;, = 0; which
implies n = 2 for the space is non-Riemannian. This gives a contradiction to the fact # >
2. Thus, we find that the condition (ii) of theorem 3.2 implies K = 0. Substituting K = 0
in (3.7) and (3.8), we have

(3.12) @ Rjgyp=0, (b)y Hi, =o.
Summarizing the above discussion, we have

Theorem 3.3 : An h-isotropic and C*-birecurrent Finsler space F, (n > 2) is either
a Riemannian space of constant curvature or it admits the Joilowing

K=0, H,=0, gy =ay,, a,y"y"=0and R' =0.

If the recurrence tensor aj,, of a non-Riemannian #- isotropic C*-birecurrent Finsler
space satisfies @, y k2 0, we have CZCi k=G C; Cy, ie. the space is C 2-like.
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