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1. Introduction

Huang and Zhang1 recently introduced the concept of cone metric space 
and established some fixed point theorems for contractive type mappings in 
a normal cone metric space. Subsequently, several other authors2,3,4 studied 
the existence of fixed points and common fixed points of mappings 
satisfying a contractive type condition on a normal cone metric space. In the 
present paper, we prove some common fixed point theorems in complete 
cone metric space. 

2. Preliminaries

The following notions have been used to prove the main result.

Definition 2.1: Let E be a real Banach Space. A subset P of E is called 
cone1 if and only if

(i)  P is closed, non empty and P   {o}.
(ii)   0  a, b  R, a, b  0, and x, y  P  ax + by  P.
(iii)   x  P and x  P  x = o.
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Definition 2.2: A cone P is called normal1 if there is a number  > o 
such that for all x, y  E, the inequality 

                                 0  x  y  ||x||  ||y ||.

The least positive number  satisfying the above inequality is called the 
normal constant of P.
      In this paper we always suppose that E is a real Banach space and P is a 
cone in E with int.P   and  is a partial ordering with respect to P.  
          

Definition 2.3: Let X be a non empty set. Suppose that the mapping      
ρ: X  X  E Satisfies:

(i) 0  ρ(x, y) for all x, y  X and ρ(x, y) = 0 if and only if x = y. 
(ii) ρ(x, y) = ρ(y, x) for x, y  X.
(iii)ρ(x, y)  ρ(x, z) + ρ(z, y) for all x, y, z  X and for all x, y, z  X.

            Then ρ is called a cone metric on X and (X, ρ) is called cone metric space2.

Lemma1 2.4: Let (X, d) be a cone metric space and {xn} be a sequence in 
X. If {xn} converges to x then {xn} is a Cauchy sequence. 

  

      Lemma1 2.5: Let (X, d) be a cone metric space and P be a normal cone 
with normal constant k. Let {xn} be a sequence in X, then {xn} is a Cauchy 
sequence if and only if d(xn, xm) 0 as m, n .   

3. Common Fixed Point Theorems

In this section we shall prove two common fixed point theorems. 

Theorem 3.1: Let (X, d) be a complete cone metric space and P be a 
normal cone with normal constant. Let f and g are two self mappings 
satisfying the condition,
                   d(fx, gy)  k [d(x, fx) + d(y, gy)] for all x, y  X, k  [0, 1/2). 

Then f and g has a unique fixed point in X.

       Proof: Let x0 be an arbitrary point in X and {x2n} be a sequence in X. 
We define the mappings f and g in X such that

x2n-1 = fx2n-2; n  N / {0} and x2n = gx2n-1  ; n  N  {0}.

Puting x = x2n-2, y = y2n-1 in equation (1), we get

d(x2n-1, x2n) = d(fx2n-2, gx2n-1) k [d(x2n-2, fx2n-2) + d(x2n-1, gx2n-1)]

 k [d(x2n-2, x2n-1) + d(x2n-1, x2n)].
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Thus d(x2n-1, x2n) 
k1

k


d(x2n-2, x2n-1).

Again putting x = x2n-3, y = y2n-2 in equation (1)

d(x2n-2, x2n-1) = d(fx2n-3, gx2n-2)  k [d(x2n-3, fx2n-3) + d(x2n-2, gx2n-2)]

 k [d(x2n-3, x2n-2) + d(x2n-2, x2n-1)].

Thus d(x2n-2, x2n-1) 
k1

k


d(x2n-3, x2n-2).

So by induction, d(x2n-1, x2n) 
n

k1

k









d(x0, x1)

d(x2n-1, x2n)  hn d(x0, x1), where h = 
1

k

k
 
  

 1.

Now for n  p we have

d(x2n, x2n+p)  d(x2n, x2n+1) + d(x2n+1, x2n+p)

 d(x2n, x2n+1) + d(x2n+1, x2n+2) + ………+ d(x2n+p-1, x2n+p)

 hn d(x0, x1) + hn+1 d(x0, x1) +………+ hn+p d(x0, x1)

 hn [1+ h + h2 + …………..hp] d(x0, x1) 
h1

hn


d(x0, x1).

Thus we get, d(x2n, x2n+p) 
h1

hn


d(x0, x1).

This implies that d(x2n, x2n+p)  0 as n .

Hence {x2n} is a Cauchy sequence. By the completeness of X there is x  X 

such that x2n  x (n ).

Now we show that fx  x i. e. fx has a fixed point in X. Since

d(fx, x) = d(fx2n-1, x2n-1) = d(fx2n-1, gx2n-2)

            k [d(x2n-1, fx2n-1) + d(x2n-2, gx2n-2)]  k [d(x2n-1, x2n-2) + d(x2n-2, x2n-1)]

            2k d(x2n-2, x2n-1),
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So d(fx, x)  2k d(x2n-2, x2n-1)  0 as n .

Hence d(fx, x) = 0. This implies fx = x i. e. x is the fixed point of f. 

Similarly we can show that g has the fixed point x.

Now we show that x is unique. For suppose x is another fixed point in x. 

Then fx = x = gx and fx = x = gx. Now

d(x, x) = d(fx, gx)  k [d(x, fx) + d(x, gx)] = k [d(x, x) + d(x, x)] = 0.

Hence d(x, x) = 0, i. e. x = x. Thus x is the unique fixed point of f and g in 
X.
This completes the proof of the theorem.

Theorem 3.2: Let (X, d) be a complete cone metric space and P be a 
normal cone with normal constant. Let f and g are two self mappings 
satisfies the condition,

d(fx, gy)  k [ 
( , ) ( , )

2

d x y d x fx
+ d(y, gy)] for all x, y  X, k  [0, 1/2). 

Then f and g has a unique fixed point in X.

       Proof: Proof is similar to theorem (3.1),s so omitted.
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