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Abstract: The fractional programming problem usually defined by the 

problems in which one has to maximize a ratio of two functions subject to 

given conditions, arise in various decision making problems. For example 

fractional programming problem is used in the field of production planning, 

traffic planning, network flows and game theory. A numerical example is is 

worked out to explain the method developed which shows improvement in 

the computational complexities.  
  

1. Introduction 
 

 Mostly income planning problem, government policy-making problems 

and socioeconomic problems require multi-objective fractional 

programming problems. Public/Govt policy decision making is generally 

based on economic criterion on the consideration of social equality. The 

objective function can be expressed as a set of fractional programming 

problem which are usually ratio of two linear function. Mathematically 

Multi Objective Linear Fractional Programming (MOLFP) can be stated as, 
 

(1.1) 1 2 kMax{Z (X),Z (X),..........Z (X)}      

 

(1.2) Subject to  Ax < b   

        

 where 
)x(D

)x(N
)X(Z

i

i
i = , i = 1, 2 ……k  , A is m x n matrix, b ∈ R

m
 ,  x ∈ 

R
n
       

 

(1.3) Let | nS {x R : Ax b}= ∈ ≤     

 



 296                                             Tarni Mandal and Ajit Ghosh 

 

An efficient solution of MOLFP is the set of all solution of 1.1, 1.2 and 

1.3. The normal definition of solution efficiency does not allow Simplex 

based algorithm to be used for solving MOLFP, we categories the efficient 

solution into two types, weak efficiency and strong efficiency referred to as 

w-and s-efficiency. 
 

a) Definition of s-efficient 
 

 A point 'Sx ∈ is defined to be s-efficient if and only if there does not exist 

another point 
|x S∈ such that i iz (x) z (x)≥ for all i, and i iz (x) z (x)≥  for at 

least one i. In other words there is no other point in S
|
 which weakly 

dominates x . 

 
 

b) Definition of w-efficient 
 

 A point sx ∈  is defined to be w-efficient if and only if there does not 

exist another point x ∈ s such that i iz (x) z (x)≥  for all i. In other words 

these is no other point in S which strongly dominates x . 

 
Remark 
 

 It may be noted that w-efficiency is a more generalised version of the 

standard definition of strong efficiency. 
 

c) Definition of θmax 
 

 We consider a w-efficient basis at a given point x ∈ S
|
, the set of all 

efficient solution. Let xi be a non basic variable associated with an initially 

w-efficient edge emanating from xi. Let θ be the value of xi which produce a 

change of basis then there exists a value of θ such that the movement along 

the initially w-efficient edge emanating from xi become w in efficient. We 

refer this value of θ as θmax.  

 

2. Formulation 
 

 We begin by referring to Ecker and Kouda1 Eans and Stuer2  that the 

solution of the problem (1.1) is set of all efficient solution because of 

complication i.e. restriction imposed on the efficient solution simplex like 

algorithm could not be established, however, by defining two types of 

efficiency namely weak efficiency (W.E) and strong efficiency (S.E). We 

may develop simplex like procedure. 
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 The solution procedure then systematically pursues all w-efficient 

vertices. By pursing a vertex, we mean that 
 

i) All emanating edes are tested for initial w-efficiency. 

ii) All initially w-efficient edges found in (i) are tested for break points. 

iii) Each break point detected in (ii) is analyzed to determine which level  

curves cause the point in question to be a break point. 

iv) θmax cutting plane are added to the MOLFP for the level curves of the 

objectives  that. 
 

a) Intersect the break point, 

b) form part (or all) of the boundary of (SE), and 

c) do not support S
|
 at the break point. 

 

3. Reduced Multiobjetive Linear Fractional Programm 

(Rmolfp) 
 

 The MOLFP (1.1) becomes,  

  

(3.1)            1R 2R kRMax{Z (v),Z (v),..........Z (v)}     

(3.2)            where,  iRZ   = 
)v(D

)v(N

R

R

i

i
  ,           

where   
oiR

T
iRiR CVC)v(N +=  and  

 (3.3)  
oiR

T
iRiR DVD)v(D += , i = 1, 2 …….k   

 

where,  

(3.4)                 )NBCC(C 1T
u i

T
v i

T
Ri

−−=        

(3.5)                 )NBDD(D 1T
iu

T
iv

T
iR

−−=          

(3.6)                 )bBCC(C 1T
iuoiRo

−+=          

(3.7)                  )bBDD(D 1T
iuoiRo

−+=   

 

4 The Augmented Rmolfp 

 

 The augmented RMOLFP for  

1 2 kMax{Z (v), Z (v),..........Z (v)}
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(4.1)        where Zi (v) = 
i

0R
iT
R

i

oR
iT
R

DvD

)C(vC

+

+
        

 Subject to, 

 

  

   V ∈ R
n-m

, deviational variables dj
+
 & dj

-1
 as defined by  

 

(4.2)   0d ,d   ,)CZD(ddV)DZC( jj
R
jR

R
jjj

j
RR

jT
R >−−=+−− −+−+    

  

The augmented constraint set does not restrict the original feasible 

region S this is because the deviational variable dj
+
 and dj

-
 add additional 

dimensionality to the feasible region. Thus by adding reduced θmax cutting 

planes, we  are able to argument the reduced feasible region by "etching"  

additional edges into and on to R  as needed when pursueing  the starting w-

efficient extreme point of S. It is likely that one or more of its emanating 

edges will be initially w-efficient.  These will then lead to adjacent w-

efficient vertices.  (Which may not correspond to extreme point of S) which 

are as yet unpursued. All unpursued vertices are stored  in  a  LIST (denoted 

by L
ω
 ) until the algorithm can  get  to  move them eventually, we will  get  

to  the  point  at  which  all w-efficient vertices have been  pursued  and  no  

un pupursned  w-efficient vertices  remain  in L
ω
.  At this point the 

algorithm terminates because all w-efficient vertices have been found. 

 

4.1 Test for initially W-efficient Edge 

 

 Consider the vector maximum problem 

 

(4.1.1)  

n-m

1

Eff{T(V).v|v R }

Let v ( max) 1 ( max) / m ( max)
j i

θ θ θ

∈

= =
     

 

where the ith row of the k x n matrix. )v(T  is the local gradient of its 

objective in an RMOLFP problem evaluated at mnRv −∈  

    

It is sufficient to define the ith raw of )v(T  as  
 

(4.1.2)   j
Ro

j
R

i
R

j
o

i
R D)CvC(C)DvD( +−+         
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From Tanion3 we know that v  is S (strong) efficient in an RMOLFPP iff v  

is R
n-m

 efficient in (4.1.1). As an immediate Corollary to Tanion theorem, v  

w-efficient in an RMOLFP iff v is w-efficient in (4.1.1). Using perturbation 

of the )v(T   matrix we can detect initially w-efficient direction as they 

emanate from a w-efficient point v mnR −∈ . This method is similar to the 

way R
n
 efficient edges are detected as they emanate from s-efficient extreme 

points in a vector-maximum problem. 
 

 Let us now review how w-efficient edges are detected in vector 

maximum problem. Let BR be a w-efficient basis of extreme point 

v mnR −∈ . To define a w-efficient basis 

 

(4.1.3)    Let )v(TNB )v(T  )v( T
~ -1

B −=         
 

be the reduced cost matrix corresponding to B at  v . Then B is w-efficient 

if and only if there exists a λ∈ R
k
, such that the system 

 

(4.1.4)   










≥λ

=λ

≥λ

O

1e

O)v(T
T

T

          

 

is consistent. Clearly, any extreme point  corresponding  to  a w-efficient 

basis is w-efficient. Now, by reworking Lemma in Evans and Steuer2 in 

terms of w-efficiency, We have the following result. For B a w-efficient  

basis  at  v , and jT
~

( )v . The jth column of the reduced cost matrix T
~

( v ), 

the edge emanating from v pertaining to the introduction of the ith non basic 

variable is  initially  w-efficient.  Eff the  sub-problem. 

 

               
n-mmax(r R )∈  

                             St. ( Orew)v(T
~

u)v(T njj ≤+− , 

(4.1.5)         mnRuO −∈≤           
mnRwO −∈≤  

r unrestricted,  

 

has bounded objective function value  )Re( k∈  is the sum vector and ( n ) is 

the number or non basic variable in the vector maximum formulation 

 

(4.1.6)    n-mEff{T(V).v|v R }∈      
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 In RMOLFP the objective function matrix and the reduced cost matrix 

are constants as we move along an efficient edge, thus having identified an 

edge, that is initially efficient in RMOLFP, it will remain efficient upto the 

next extreme point. As we have seen in RMOLFP edges can be broken. 

Further, more, T ( v ), the linear objective function matrix is not constant as 

we move along a w-efficient edge. For this reason, in RMOLFP an edge 

may start out w-efficient and become w-inefficient before reaching the 

extreme point at the other end. The most extreme case of this ‘breaking’ will 

be the case in which the test (4.1.5) suggests that an edge is initially w-

efficient but that the break point occurs immediately (for θ > 0). To avoid 

such situation, the sub-problem test (4.1.5), must be modified so as to detect 

edges which have a non empty w-efficient segment (4.1.5) is modified as 

follows. Let B be a w-efficient basis at v , and let v̂ denote the extreme 

point that would result by an acceptable pivot choice when introducing the 

jth nonbasic variable. Then edge r ( v , v̂ ) is initially w-efficient (as it 

emanates from v ) if there exists a [K ∈(0,1)] such that   

 

Max (r mnR −∈ ) 

s t ( Orew)v(T
~

u)v(T
~

jjjj ≤+δ+−δ+ . 

nRuO ∈≤ ,        

(4.1.7) 
nRwO ∈≤ , 

r unrestricted           

 

has a bounded objective functions value for  

 

)vv̂(K.D nj −=δ  for all α ∈ (0, 1) 
 

i.e. there is some finite portion of the edge as it initially emanates from 

v that is w-efficient. 
 

To implement the revised sub problem test, it has been found convenient to 

solve (4.1.7) only once, using a jδ  that is based upon k value of 0.01  

i.e. set jδ  = 0.01 )vv̂( − . The k value 0.01 is chosen (as a tolerance) to be 

large enough to allow the gradients to change by a numerically significant 

amount when going from v to  )v̂( jδ+ , yet small enough to minimize the 

probability of overshooting a break point (beyond which the edge becomes 

w-inefficient). 
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4.2 Detecting of Break Points W-efficient Edges 
 

     Consider a w-efficient basis B at v n m
R

−∈ let vj be a non basic variable 

associated with on initially w-efficient edge emanating from v .  Let θ̂  be 

the value of vi that would produce a basis change at ( v̂ ). We want to 

determine If there exists a  value of θ (that we will refer to as θmax) beyond 

which  movement along the  initially  w-efficient  edge  associated  with  vi 

becomes w-inefficient (or would become w-inefficient if  it were feasible.  

If  
 

a) Qmax < θ̂ , we have detected a  broken edge whose break point occurs at 

the  point  along  with  the edge at which vi = θmax. passing through this 

break  point  is at least one level curve of an objective that forms part  of the 

boundary of the w-efficient set E
w
.  Such level curves will be called θmax - 

cutting planes. Identification and insertion of the Qmax - cutting planes is 

considered in (4.3). 
 

b) θmax  = θ̂ , the edge is co-efficient up to the next vertex but is neverthless 

a broken edge. Beyond this vertex  the  edge (if it  were  feasible)  would  

become  w-in  efficient.  The significance of θmax =  θ̂  is that there exists a  

θmax cutting plane that goes through the adjustment vertex. 

 

c) Qmax > θ̂ , the entire edge  is  w-efficient  and  is  not interdicted by any 

θmax -cutting planes. 

 

Before discussing how θmax is calculated,  let  us study the nature of the 

reduced cost matrix )v(T
~

 at B and  v . Because the gradient of the 

objectives in RMOLFPP are not constant )v(T   can very as we emanate 

from v  along an edge. If we are moving along the edge associated with vj 

)v(T
~

 can be expressed as a function of θ as follows. 

 

(4.2.1)    Let 
)v(m

)v(l
)v(z

i

i
i =  where    

       

(4.1.2)    

o

o

R
1
Rj

R
1
Rj

DvD)v(m

CvC)v(l

+=

+=
  

          

As we move along the edge )v̂,v(  
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we have 

     lj (θ) = l θ− Rn C)v(    

(4.2.3)    mj (θ) = m θ− Rjn D)v(    

where Rj RjC and D  are the ith columns of the numerator and denominator 

reduced cost matrices and  

 

where    o
1

BR CNBCC −= −   

(4.2.4)   o
1

BR DNBBD −= −          

 

Therefore 
         D)(lC  )(m)(T RRR �� θ−θ=θ   

                       = )DCC(D )()Dvv(lC)v(m( R
jR

R
jRRR ���� −θ+−   

                         = )DCCDC  )v(T jRjR �� −θ+   

It follows that  

 

(4.2.5)  )j,v(H )v(T
~

)(T
~

θ+=θ          

 

 where )j,v(H  is given by ta matrix 

 

(4.2.6)   )j,v(H  = ( )DCCD(NB)DCCD( ojNj
1

BjBj ���� −−− −     

  

 where )j,v(H  is a constant matrix the same size as )v(T
~

 that represents 

the rate  at which the reduced cost matrix value along the edge associated 

with B and vj. Therefore, the maximum value of θ for which test system 

 

(4.2.7)   

[ ]










∈λ≤

=λ

≥θλ=θ+λ

k

T

TT

RO

1e

O)(T
~

)j,v(H)v(T
~

         

 

remains consistent in θmax 

 

 To calculate θmax sub problem (4.2.8) is solved for p = 1,2,….. 
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(4.2.8)   















∈≤∈≤

∈λ≤

=λ

≥−θλ

∈

,RSO  RSO

RO

1e

OSe t.s

)SSmax(

k

k

T
R

p
R

T
R

n

         

 

where )v(TPp =    

 

Once we have identified that R
k
 (the optimal value of S in (4.2.8) is less 

than some prespecified tolerance, we can use standard extrapolation 

techniques based on the method of Williams5  to get an ‘accurate’ evaluation 

of θmax. An example is presented in table (4.2.5) and (4.2.6).   

 

  A tighter form  for  the  θmax test  is  given  by requiring that the redused 

cost of vi   be  zero  as  we  move along the edge  γ ( v̂,v ).  This is done by 

adding the requirement l  O 
P
j

T =θλ    to the constraints. Set of (4.2.8). The 

calculation of θmax corresponds to Block 1(c). 

 

4.3 Identification and Insertion of The θMax-Cutting Planes 

 

 We have shown how the value for θmax is calculated. Given θmax, the 

cutting planes are identified as follows: 
 

a) Identify all alternative solutions  Riλ for (4.2.7) for which θ = θmax. 

b) iLet 1={i| }Oλ > . The set I is the set of objectives whose levels curves 

pass through the point θ = θmax and lead to alternate (additional) w-

efficient vertices. 

c) Ignore any cutting plane whose gradient is a linear combination of 

gradients of already identified cutting planes. 

 

 Having identified which planes need to be inserted, the feasible region is 

augmented as follows. 

i) Assume that the current (as yet pursued) vertex is v . Introducing non 

basic   vj = o leads along an initially w-efficient edge to θ = θmax. 
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ii) 1Let v ( max) 1 ( max) / m ( max)
j i

θ θ θ=  be the value of zi at 1v ( max)θ=  

and let C
-j
 and d

-j
 be the updated rows of the numerator and denominator 

functions. 

iii) For linear objective we use  

 

(4.3.1)   max( ) ( )
i i i i

Cv d d z z Vθ+ −− + = −        

 

iv) For fractional objectives we use 

 

(4.3.2)     max max( ) ) ( ) ( ) (( ))i

i

i i i i i iv
C z d d d ZR mR V lR Vθ θ+ −− − + = − −   

  

5. Algorithm 

 

 We begin by referring to Ecker and Kouda1  & Eans and Steure2 that the 

solution of the problem (1) is set of all efficient solution because of 

complication i.e. restriction imposed on the efficient solution simplex like 

algorithm could not be established, however, by defining two types of 

efficiency namely weak efficiency (W.E) and strong efficiency (S.E). 

 

 The solution procedure the systematically peruses all w-efficient 

vertices. By perusing  a vertex, we mean that 

 

Step-0 
 

Procedure ‘initial w-efficient’  

 All emonating edes one tested for initial w-efficiency. 
 

Step-1 

Procedure ‘w-efficient edges’ 

 All initially w-efficient edges found in (a) are tested for break points. 

Step-2 
Procedure ‘break point’ 

 Each break point detected in (b) is analyzed to determine which level  

curves cause the point in equations to be a break point. 
 

Step-3 

Procedure ‘cutting plane’ 

Max-cutting plane are added to the RMOLFP for the level curves of the 

objectives that. 
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Step-4 

Procedure ‘inter section’ 

 Intersect the break point, 
 

Step-5 

Procedure ‘boundary’ 

 Form part (or all) of the boundary of E
R
, and 

 

Step-6 

 Procedure ‘optimality’  

 

6. Numerical Example of Molfp 

  

 We consider the following example of MOLFP in which there are three 

objectives in a polyhedral feasible region. 

 

Example 6.1 

 

 








=
+++−

−−++
)x(z

3xxx

4xxx2x
  Max 1

431

4321  

 








=
+++

++++
)x(z

1xx2x

4xx2xx-
  Max 2

432

4321  

 








=
+++−

−++
)x(z

x2x2xx

xxxx-
  Max 3

4321

4321  

 Subject to the constraints 

 

 

+ -

S W 3 4 2 4 5 4

1 2 k

n-m

n-m

1 1

E =E [ (x , x ) x ) [ (x , x ) x ]

Max{Z (v), Z (v),..........Z (v)}

Eff{T(v).v|v R }

max(r R )

d ,d 0

γ γ− − − −

∈

∈

≥

 unrestricted. 

 

We shall use the symbol γ for convex combination operator in the sense that 

the set of all convex combinations of the N-points x
1
, x

2
………x

n
 is written 

as. 
 

1 2 n(x , x .......x )γ  

then the set of all w-efficient and all s-efficient solutions are given by 
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W 1 2 3 2 3 4 5 5 6E = (x , x , x ) (x , x , x , x ) (x , x )γ γ γ∪ ∪  

 
S W 3 4 2 4 5 4E =E [ (x , x ) x ) [ (x , x ) x ]γ γ− − − −  

 

Then the augmented feasible region gives the following 

 

 

 
  
 
 

W 1 2 3 4 5 6

a

S W 3 4

v a

W 1 4 6

x

S W 4

x x

i i

E ={x ,x ,x , x , x , x }

E =E -{x , x }

E ={x ,x ,x }

E =E -{x }

z (x) z (x)≥

 

 

Step-1 

 

First w-efficient basis (Table 6.1) 

 

 

 x1 x2 x3 x4 x5 x6 rhs 

x5 1 2 2 0 1 0 12 

x6 12 3 0 4 0 1 24 

Step 2 to step 7 determined the following 

 

2) x1 is the edge initially w-efficient 

3) x5 is the edge initially w-efficient 

4) along the x5 edge introduce cutting plane θmax > 0  )0ˆ( =θ  

5) Enter the basis & (x5, x6) in L
w
 

6) Persuing the designated basis 

7) Crash to the basis (x5, x6)   

 
(Table 6.2) 

 

 x1 x2 x3 x4 x5 x6 rhs 
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x2 ½ 1 1 0 ½ 0 6 

x6 21/2 0 -3 1 -1/2 1 6 

 

Step 8 to step 12 carried out the following operations. 
 

8) x1 edge initially efficient 

9) along x1 edge θmax = 4 )4ˆ( =θ  

10) enter the basis 

11) defining the level curve z1 = 12 

 

 

12) Inserted the cutting plane θmax in MOLFP and augmented with the 

following constraints. 

+ -1 1 1
x -d d 4+ =  

+ -1 1
d ,d 0≥  

         (Table 6.3) 

 

 x1 x2 x3 x4 x5 x6 d1 d2 rhs 

x2 ½ 1 1 0 ½ 0 0 0 6 

x6 21/2 0 -3 1 -1/2 1 0 0 6 

d1 1 0 0 0 0 0 -1 1 4 

 Steps 13 to step 33 carried out to give the optimal solution. 

 



























=

=

=

=

0x

0x

6x

2x

 

*
4

*
3

*
2

*
1

 























=

=

=

1z

7/8z

01z

 

opt
3

opt
2

opt
1

 

  

 

7. Conclusion 
 

 In this chapter we have presented a multi-objective linear fractional 

programming problem in the reduced frame work. We have devised a 

simplex based solution procedure for the RMOLFPP by a shift from the 

usual notation and defined a new kind of efficiency called w-efficient base. 

The method has important advantages of allowing the model builder and 

decision maker to include fractional objective.  
 

 This increases the possibility of application of multiple objective 

fractional programming to a wide variety of problems. The geometric 
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properties presented in the set of efficient and weekly efficient solution of 

multiple linear fractional programming problem have been investigated and 

we recommend that the set of efficient point should be always closed and 

should have strong connectedness property.   
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