Lie-Derivative of a Linear Connexion and Various Kinds of Motions in a Kaehlerian Recurrent Space of First Order

K. S. Rawat and Nitin Uniyal

Department of Mathematics
H. N. B. Garhwal University Campus, Badshahi Thaul
Tehri (Garhwal)- 249199,Uttarakhand, India
Email: nitinuniyalddn@gmail.com

(Received November 15, 2010)

Abstract: Knebelman¹ studied and defined collineations and motions in generalized spaces. Levine² studied motions in linearly connected two dimensional spaces. Tokano³ studied on the existence of Affine motion in a space with recurrent curvature tensor. Further, Negi and Rawat⁴ studied Affine motion in an Almost Tachibana recurrent space. Rawat and Silswal⁵ studied Theory of Lie-derivatives and motions in Tachibana space. In the present paper, we have studied Lie-derivative of a linear connexion and various kinds of motions (Affine motion, Projective motion and Conformal motion) in a Kaehlerian recurrent space of first order also several theorems have been established and proved therein.

Keywords: Collineation, Affine motion, Recurrent curvature tensor, Kaehlerian recurrent space

2010 MS Subject Classification No.: 53B40

1. Introduction

Let X_{2n} be a 2n-dimensional almost complex space and F_j^i its almost-complex structure, then by definition, we have

$$(1.1) F_j^s F_s^i = -\delta_j^i.$$

An almost- complex space with a positive definite Riemannian metric g_{ji} satisfying

$$(1.2) g_{rs}F_i^rF_i^s=g_{ii},$$

is called an almost-Hermitian space. From (1.2), it follows that $F_{ji} = g_{ri}F_{ji}'$ is skew-symmetric.

If an almost- Hermitian space satisfies

(1.3)
$$\nabla_{i}F_{ih} + \nabla_{i}F_{hi} + \nabla_{h}F_{ii} = 0$$
,

where ∇_j denotes the operator of Covariant derivative with respect to the symmetric Riemannian Connection, then it is called an almost-Kaehlerian space and if it satisfies

$$(1.4) \quad \nabla_{i} F_{ih} + \nabla_{i} F_{hi} = 0,$$

then it is called a K-space. In an almost-Hermitian space, if

(1.5)
$$\nabla_i F_{ih} = 0$$
 or $F_{ih,i} = 0$,

then it is called a Kaehlerian space or, briefly a K_n - space.

A Kaehler space K_n satisfying the relation

$$R_{iik,a}^h - \lambda_a R_{iik}^h = 0$$
 or

$$\nabla_a R_{iik}^h - \lambda_a R_{iik}^h = 0,$$

for some non-zero vector λ_a , will be called a Kaehlerian recurrent space of first order. It is called Ricci-recurrent (or, semi-recurrent) space of first order, if it satisfies

$$R_{ii.a} - \lambda_a R_{ij} = 0$$
 or

$$(1.6a) \nabla_a R_{ii} - \lambda_a R_{ii} = 0.$$

Multiplying the above equation by g^{ij} , we have

$$R_{a} - \lambda_{a} R = 0$$
 or

(1.6b)
$$\nabla_a R - \lambda_a R = 0.$$

Remark (1.1). From (1.6) and (1.6a), it follows that every Kaehlerian recurrent space of first order is Ricci-recurrent space of first order, but the converse is not necessarily true.

2. Lie-Derivative of a Linear Connexion

Let us consider a L_n (i.e. the space provided with a linear connexion $\Gamma_{\mu\lambda}^{\chi}(\xi)$ an infinitesimal point transformation

$$(2.1) \xi^{\chi} = \xi^{\chi} - v^{\chi}(\xi) dt.$$

the deform of a contravariant vector u^x is defined by

and that of the linear connexion $\Gamma^{\chi}_{\mu\lambda}$ by

(2.3)
$${}^{!}\Gamma_{\mu'\lambda'}^{\chi'}(\xi) \stackrel{def}{=} \Gamma_{\mu\lambda}^{\chi}({}^{!}\xi).$$

If we now denote by, δ the covariant differential with respect to $\Gamma^{\chi}_{\mu\nu}$ and by ' δ the covariant differential with respect to ' $\Gamma^{\chi}_{\mu\nu}$, we have

$$'\delta' u^{\chi}(\xi) = d'u^{\chi'}(\xi) + '\Gamma^{\chi'}_{\mu'\chi}(\xi)u^{\lambda'}(\xi)d\xi^{\mu'}$$

$$= du^{\chi}('\xi) + \Gamma^{\chi}_{\mu\lambda}('\xi)u^{\lambda}('\xi)d'\xi^{\mu}$$

$$= \delta u^{\chi}('\xi).$$

On the other hand, for the deform of δu^{x} , we have

$$'(\delta'u^{\chi}(\xi)) = \delta u^{\chi}('\xi).$$

From these two equations, we have

$$(2.4) '\delta' u^{x} = '\delta u^{x'}('\xi),$$

holding with respect to every coordinate system and consequently

(2.5)
$${}^{\dagger}\delta\left(u^{\chi} + \mathop{\pounds}_{v} u^{\chi}\right) dt = \delta u^{\chi} + \mathop{\pounds}_{v} u^{\chi} dt$$

with respect to (x). Thus, we have

Theorem 2.1. The covariant differential of the deform of a contravariant vector with respect to the deform linear connexion is equal to the deform of the covariant differential of the vector with respect to the original linear connexion.

Since

$${}^{\dagger}\delta\left(u^{x} + \mathop{\pounds}_{v}u^{x}dt\right) = d\left(u^{x} + \mathop{\pounds}_{v}u^{x}dt\right) + \left(\Gamma_{\mu\lambda}^{x} + \mathop{\pounds}_{v}\Gamma_{\mu\lambda}^{x}dt\right)\left(u^{x} + \mathop{\pounds}_{v}u^{x}dt\right)d\xi^{\mu}$$
$$= \delta u^{x} + \delta\mathop{\pounds}_{v}u^{x}dt + \left(\mathop{\pounds}_{v}\Gamma_{\mu\lambda}^{x}\right)u^{\lambda}d\xi^{\mu}dt.$$

We have from (2.5)

(2.6)
$$f \delta u^{\chi} - \delta f u^{\chi} = \left(f \Gamma_{\mu\lambda}^{\chi} \right) u^{\lambda} d\xi^{\mu}.$$

Taking account of $\pounds_{\nu} \xi^{x} = 0$, we have from (2.6)

(2.7)
$$\underbrace{\mathfrak{t}}_{v} \nabla_{\mu} u^{\chi} - \nabla_{\mu} \underbrace{\mathfrak{t}}_{v} u^{\chi} = \left(\underbrace{\mathfrak{t}}_{v} \Gamma^{\chi}_{\mu \lambda} \right) u^{\lambda}.$$

Formula (2.7) can be generalized for a covariant vector ω_{λ} and for a general tensor $P_{\mu}^{\chi\lambda}$ as follows:

(2.8)
$$f_{\nu} \nabla_{\mu} \omega_{\lambda} - \nabla_{\mu} f_{\nu} \omega_{\lambda} = - \left(f_{\nu} \Gamma^{\chi}_{\mu \lambda} \right) \omega_{\chi}.$$

(2.9)
$$\underbrace{\mathfrak{t}}_{v} \nabla_{\mu} P_{\chi}^{\lambda \mu} - \nabla_{\mu} \underbrace{\mathfrak{t}}_{v} P_{\chi}^{\lambda \mu} = \left(\underbrace{\mathfrak{t}}_{v} \Gamma_{v \rho}^{\chi} \right) P_{\mu}^{\rho \lambda} + \left(\underbrace{\mathfrak{t}}_{v} \Gamma_{\mu \rho}^{\lambda} \right) P_{\mu}^{\chi \rho} - \left(\underbrace{\mathfrak{t}}_{v} \Gamma_{v \mu}^{\rho} \right) P_{\rho}^{\chi \lambda}.$$

From these equations, we have

Theorem 2.2. In order that (2.1) be an affine motion in an L_n , it is necessary and sufficient that the covariant differentiation and the Lie derivation with respect to (2.1) be commutative.

Now since the deformed linear connexion is given by

(2.10)
$$\Gamma^{\chi}_{\mu\lambda} = \Gamma^{\chi}_{\mu\lambda} + \pounds \Gamma^{\chi}_{\mu\lambda} dt$$

it follows immediately that

$$(2.11) 'S_{\mu\lambda}^{\chi} = S_{\mu\lambda}^{\chi} + \pounds S_{\mu\lambda}^{\chi} dt$$

It is also evident that the deformed curvature tensor is given by

$$(2.12) {}^{\prime}R_{\nu\mu\lambda}^{\chi} = R_{\nu\mu\lambda}^{\chi} + \underset{\upsilon}{\pounds} R_{\nu\mu\lambda}^{\chi} dt.$$

In fact substituting (2.10) into

$${}^{\shortmid}R^{\chi}_{\nu\mu\lambda} = 2\partial_{\nu}\Gamma^{\chi}_{\mu\lambda} + 2{}^{\backprime}\Gamma^{\chi}_{\nu\rho}{}^{\backprime}\Gamma^{\rho}_{\mu\lambda} .$$

We find

$$(2.13) \quad {}^{\backprime}R^{\chi}_{\nu\mu\lambda} = R^{\chi}_{\nu\mu\lambda} + \left(\nabla_{\mu} \mathop{\pounds}_{\nu} \Gamma^{\chi}_{\mu\lambda} - \nabla_{\mu} \mathop{\pounds}_{\nu} \Gamma^{\chi}_{\nu\lambda} + 2S^{\rho}_{\nu\mu} \mathop{\pounds}_{\nu} \Gamma^{\chi}_{\mu\lambda}\right) dt.$$

On the other hand, by virtue of Ricci identity

$$2\nabla_{\nu}\nabla_{\mu}\upsilon_{\lambda}^{x} = R_{\nu\mu\rho}^{x}\upsilon_{\lambda}^{\rho} - R_{\nu\mu\lambda}^{\rho}\upsilon_{\rho}^{x} - 2S_{\nu\mu}^{\rho}\nabla_{\rho}\upsilon_{\lambda}^{x}$$

and of the second Bianchi identity

$$\nabla_{\nu}R^{x}_{\nu\mu\rho}=2S^{\sigma}_{\nu\mu}R^{x}_{\mu\sigma\lambda}.$$

We find

$$\nabla_{\mu} \underbrace{\mathbf{f}}_{\nu} \Gamma^{\chi}_{\mu\lambda} - \nabla_{\mu} \underbrace{\mathbf{f}}_{\nu} \Gamma^{\chi}_{\nu\lambda} + 2S^{\rho}_{\nu\mu} \underbrace{\mathbf{f}}_{\nu} \Gamma^{\chi}_{\mu\lambda} = \nabla^{\rho} \nabla_{\rho} R^{\chi}_{\nu\mu\lambda} - R^{\rho}_{\nu\mu\lambda} \upsilon^{\chi}_{\rho} + R^{\chi}_{\rho\mu\lambda} \upsilon^{\rho}_{\nu} + R^{\chi}_{\nu\mu\lambda} \upsilon^{\rho}_{\nu} + R^{\chi}_{\nu\nu\lambda} \upsilon^{\rho}_{\nu}$$

or

(2.14)
$$\nabla_{\nu} \underset{v}{\pounds} \Gamma_{\mu\lambda}^{\chi} - \nabla_{\mu} \underset{v}{\pounds} \Gamma_{\nu\lambda}^{\chi} - 2S_{\nu\mu}^{\rho} \underset{v}{\pounds} \Gamma_{\rho\lambda}^{\chi} = \underset{v}{\pounds} R_{\nu\mu\lambda}^{\chi}.$$

3. Motions in a Kachlerian Recurrent Space of First Order

Let us consider n(=2m) dimensional Kaehlerian space K_n covered by a set of neighbourhoods with coordinates ξ^x and endowed with the fundamental quadratic differential form

(3.1)
$$ds^2 = g_{xx}(\xi)d\xi^{\lambda}d\xi^{\chi},$$

where the indices $x, \lambda, \mu, \nu, \dots$, run over the range 1,2,3,..., n. In the space K_n referred to ξ^{χ} , we consider a point transformation

$$(3.2) T: \, \xi^x = f^x(\xi^v) : Det(\partial_x \xi^x) \neq 0.$$

which establishes a one-to-one correspondence between the points of a region R and those of some other region R, where ∂_A stands for the partial derivation $\frac{\partial}{\partial \xi^A}$.

During this point transformation, a point ξ^x in R is carried to a point ξ in ξ^x and a point $\xi^x + d\xi^x$ in ξ^x in ξ^x and a point $\xi^x + d\xi^x$ in ξ^x in ξ^x and $\xi^x + d\xi^x$ is always equal to the distance between the two original points ξ^x and $\xi^x + d\xi^x$ is always equal to the point transformation (3.2) is called a *motion or an isometry* in the space ξ^x .

(I). Affine Motion in K_n

Consider a Kaehlerian space K_n provided with a linear connexion $\Gamma^{\chi}_{\mu\lambda}(\xi)$. In a K_n the parallelism between a vector u^{χ} at a point ξ^{χ} and a vector $u^{\chi} + du^{\chi}$ at a point $\xi^{\chi} + d\xi^{\chi}$ is defined by

(3.3)
$$\delta u^{\chi} = du^{\chi} + \Gamma^{\chi}_{\mu\lambda} u^{\lambda} d\xi^{\mu} = 0.$$

When we effect a point transformation (3.2), the differentials $d\xi^{z}$ at ξ^{z} are transformed into the differentials

(3.4)
$$d^*\xi^x = \frac{\partial f^x}{\partial \xi^v} d\xi^v$$

at ξ^x . Now if we make the condition that the vector u^x at ξ^x is transformed from ξ^x to ξ^x in the same way as the linear elements $d\xi^x$ at ξ^x , then the corresponding vector ξ^x is

(3.5)
$$u^{x} * \xi = \frac{\partial f^{x}}{\partial \xi^{v}} u^{v}(\xi).$$

Definition. When a point transformation (3.2) transforms any pair of parallel vector into a pair of parallel vectors, then (3.2) is called affine motion in K_n .

For an affine motion, we must have

(3.6)
$$\delta^m u^{\chi}({}^*\xi) \stackrel{\text{def } m}{=} du^{\chi}({}^*\xi) + \Gamma^{\chi}_{\mu\lambda}({}^*\xi)u^{\lambda}({}^*\xi)d\xi^{\mu} = 0.$$

(ii). Projective Motion in K_n .

Let us consider a Kaehlerian space K_n with a symmetric linear connexion $\Gamma^{\chi}_{\mu\lambda}$. The geodesic of the space is given by

(3.7)
$$\frac{d^2\xi^{x}}{dt^2} + \Gamma^{x}_{\mu\lambda} \frac{d\xi^{\mu}}{dt} \frac{d\xi^{\lambda}}{dt} = \alpha(t) \frac{d\xi^{x}}{dt}.$$

Definition. When a point transformation (3.2) transforms the system of geodesic into the same system, then (3.2) is called a projective motion in K_n .

The necessary and sufficient condition that (3.2) be a projective motion in a K_n is that the Lie-difference of $\Gamma^{\chi}_{\mu\lambda}$ with respect to (3.2) has the form

$$(3.8) \qquad {}^*\Gamma^{\chi}_{\mu\lambda} - \Gamma^{\chi}_{\mu\lambda} = A^{\chi}_{\mu} p_{\lambda} + A^{\chi}_{\lambda} p_{\mu},$$

where p_{λ} is a covariant vector.

When (3.2) is an infinitesimal transformation

$$(3.9) {}^{\star}\xi^{x} = \xi^{x} + \upsilon^{x}(\xi)dt,$$

then the condition is

(3.10)
$$f \Gamma_{\mu\lambda}^{\chi} = A_{\mu}^{\chi} p_{\lambda} + A_{\lambda}^{\chi} p_{\mu}.$$

(iii). Conformal Motion in K_n .

Definition. When a point transformation (3.2) does not change the angle between two directions at a point, then (3.2) is called a Conformal motion in the K_n .

The necessary and sufficient condition that (3.2) be a conformal motion in a K_n is that the Lie-difference of g_{λ_x} with respect to (3.2) be proportional to g_{λ_x} .

$$(3.11) {}^*g_{\lambda \chi} - g_{\lambda \chi} = 2\phi g_{\lambda \chi},$$

where ϕ is a scalar.

When (3.2) is an infinitesimal transformation, then the condition is

$$(3.12) fg_{\lambda\chi} = 2\phi g_{\lambda\chi}.$$

Thus, we have

Theorem (3.1). A necessary and sufficient condition that (3.9) be a conformal motion in a space K_n is that the Lie-derivative of $*g_{\lambda\chi}$ be a multiple of $g_{\lambda\chi}$.

Theorem (3.2). A motion in a Kaehlerian space K_n is an affine motion.

Proof. To prove this, we apply the formula (2.9) to the fundamental tensor $g_{\lambda\chi}$,

$$\underbrace{\mathfrak{t}}_{\upsilon} \left(\nabla_{\mu} g_{\lambda \chi} \right) - \nabla_{\mu} \left(\underbrace{\mathfrak{t}}_{\upsilon} g_{\lambda \chi} \right) = - \left(\underbrace{\mathfrak{t}}_{\upsilon} \left\{ \begin{matrix} \rho \\ \mu & \lambda \end{matrix} \right\} \right) g_{\rho \chi} - \left(\underbrace{\mathfrak{t}}_{\upsilon} \left\{ \begin{matrix} \rho \\ \mu & \chi \end{matrix} \right\} \right) g_{\lambda \rho},$$

from which

(3.13)
$$\underbrace{\mathbf{f}}_{\nu} \left\{ \frac{\chi}{\mu \lambda} \right\} = \frac{1}{2} g^{\chi \rho} \left[\nabla_{\mu} \underbrace{\mathbf{f}}_{\nu} g_{\lambda \rho} + \nabla_{\lambda} \underbrace{\mathbf{f}}_{\nu} g_{\mu \rho} - \nabla_{\rho} \underbrace{\mathbf{f}}_{\nu} g_{\mu \lambda} \right].$$

This equation shows that $\underset{\nu}{\mathfrak{t}} g_{\lambda x} = 0$ implies $\underset{\nu}{\mathfrak{t}} \left\{ \begin{matrix} \chi \\ \mu & \lambda \end{matrix} \right\} = 0$.

Note: Under some global conditions $\pounds_{\nu} \left\{ \frac{\chi}{\mu \lambda} \right\} = 0$. implies $\pounds_{\nu} g_{\lambda \chi} = 0$.

Theorem (3.3). For a motion in a Kaehlerian space K_n the Liederivatives of the curvature tensor and its successive covariant derivatives vanish.

Proof. Applying the formula (2.14) to the Christoffel symbol, we have

(3.14)
$$\nabla_{\nu} \underbrace{\mathfrak{t}}_{\nu} \left\{ \begin{matrix} \rho \\ \mu & \lambda \end{matrix} \right\} - \nabla_{\mu} \underbrace{\mathfrak{t}}_{\nu} \left\{ \begin{matrix} \rho \\ \nu & \lambda \end{matrix} \right\} = \underbrace{\mathfrak{t}}_{\nu} K_{\nu\mu\lambda}^{\rho},$$

where $K_{\nu\mu\lambda}^{\chi}$ is the curvature tensor of K_n . Thus for a motion, we have

On the other hand since a motion is an affine motion, the covariant derivation and the Lie-derivation are commutative. Thus from (3.15), we obtain

(3.16)
$$\oint_{\nu} \nabla_{\omega} K_{\nu\mu\lambda}^{\chi} = 0, \oint_{\nu} \nabla_{\omega 1} \nabla_{\omega 2} K_{\nu\mu\lambda}^{\chi} = 0, \dots$$

This proves the theorem.

4. Theorems on Projectively or Conformally Related Spaces

Theorem (4.1). If two Kaehlerian spaces K_n and $*K_n$ are in geodesic correspondence and if K_n admits a group of motions, $*K_n$ also admits a group of motions.

Proof. Considering two Kaehlerian spaces K_n and K_n which are in geodesic correspondence. Then denoting the Christoffel symbols of them by $\begin{cases} \chi \\ \mu \lambda \end{cases}$ and K_n and K_n respectively, we have

(4.1)
$$\left\{ \frac{\chi}{\mu \lambda} \right\} = \left\{ \frac{\chi}{\mu \lambda} \right\} + A_{\mu}^{\chi} p_{\lambda} + A_{\lambda}^{\chi} p_{\mu}.$$

But since K_n and $*K_n$ are both Kaehlerian, the vector ϕ_{λ} should be a gradient. Thus putting $p_{\lambda} = \frac{1}{2} \partial_{\lambda} \log \phi$, we get

(4.2)
$$\left\{ \frac{\chi}{\mu \lambda} \right\} = \left\{ \frac{\chi}{\mu \lambda} \right\} + \frac{1}{2} A_{\mu}^{\chi} \partial_{\lambda} \log \phi + \frac{1}{2} A_{\lambda}^{\chi} \partial_{\mu} \log \phi.$$

We now assume that the space K_n admits a motion with symbol f. Then, we have

$$\underbrace{\mathbf{f}}_{\nu} g_{\lambda_{\chi}} = \nabla_{\lambda} \upsilon_{\chi} + \nabla_{\chi} \upsilon_{\lambda} = \partial_{\lambda} \upsilon_{\chi} + \partial_{\chi} \upsilon_{\lambda} - 2 \begin{Bmatrix} \rho \\ \lambda, \chi \end{Bmatrix} = 0.$$

Consequently on using (4.2), we have

$$\begin{split} & \underbrace{\mathbf{f}}_{v} g_{\lambda x} = \nabla_{\lambda} \upsilon_{x} + \nabla_{x} \upsilon_{\lambda} = \partial_{\lambda} \upsilon_{x} + \partial_{x} \upsilon_{\lambda} - \left[2 \left\{ \frac{\rho}{\lambda x} \right\} - \frac{1}{2} A_{x}^{\rho} \partial_{\lambda} \log \phi - \frac{1}{2} A_{\lambda}^{\rho} \partial_{x} \log \phi \right] \upsilon_{\rho} \\ & = \phi^{-1} \left[\partial_{\lambda} \left(\phi \upsilon_{x} \right) + \partial_{x} \left(\phi \upsilon_{\lambda} \right) - 2 \left\{ \frac{\rho}{\lambda x} \right\} \phi \upsilon_{\rho} \right]. \end{split}$$

Thus denoting by ${}^*g_{\lambda x}$ the fundamental tensor of *K_n and ${}^*\pounds_v f = 0$ the symbol defined by ϕv_x in *K_n , we have

$$\mathop{\mathfrak{t}}_{\nu} g_{\lambda x} = \phi^{-1} \mathop{\mathfrak{t}}_{\nu} \mathop{\mathfrak{t}}_{\lambda x}.$$

Theorem (4.2). If a K_n admits a G_r of motions such that the rank of v_a^x in a neighborhood is equal to r < n, then there exist n-r K^{rs} corresponding to n-r independent solutions of $\int_{v}^{c} \rho^2 = 0$, which are conformal to the given K_n and admit the same group as a group of motions

Proof. Let us consider a Kaehlerian space K_n which admits a r-parameter group G_r of motions such that the rank of υ_a^{χ} is in a certain neighbourhood is equal to r < n. Then, we have $\oint_{\nu} g_{\chi\chi} = 0$. In the same group G_r as a group of motions, it is necessary and sufficient that there exist a function ρ^2 such that $\oint_{\nu} (\rho^2 g_{\chi\chi}) = 0$ or $\oint_{\nu} \rho^2 = 0$.

But on the other hand $(\pounds_c \pounds_b) \rho^2 = c_{cb}^a \pounds_a \rho^2$ and consequently $\pounds_v \rho^2 = 0$ admits n-r independent solutions.

Note: The *a*-rank of the $\underset{v}{\mathbf{f}} g_{\lambda x}$ is the rank of the matrix $\underset{v}{\mathbf{f}} g_{\lambda x}$ where *a* denotes the rows and λ_x denotes the columns.

References

- 1. M. S. Knebelman, Collineations and motions in generalized spaces, *Amer. Jour. of Math.*, **51** (1929) 527-564.
- J. Levine, Motions in linearly connected two dimensional spaces, Proc., Amer. Math. Soc., 2 (1951) 932-941.
- 3. K.Takano, On the existence of Affine motion in a space with recurrent Curvature tensor, *Tensor N. S.*, 17(1) (1966)68-73.
- D. S. Negi and K. S. Rawat, Affine motion in almost Tachibana recurrent space, Acta Ciencia Indica, XXIII M (3) (1997) 235-238.
- K. S. Rawat and G. P. Silswal, Theory of Lie-derivatives and motions in a Tachibana spaces, News Bull. Cal. Math. Soc., 32 (1-3) (2009) 15-20.
- 6. K. Yano, The Theory of Lie-derivatives and its applications, Amsterdam, 1957.

- S. Sawaki, On the Matsushima's theorem in a compact Einstein K-space, *Tohoku Math. Jour.*, 13 (1961) 455-465.
- 8. K.S. Rawat and Virendra Prasad, On Lie-derivatives of scalars, vectors and tensors, *Pure and applied Mathematika Sciences*, LXX (1-2) (2009) 135-140.
- 9. K. S. Rawat and Virendra Prasad, On holomorphically projective Flat parabolically-Kaehlerian spaces, *Rev. Bull. Cal. Math. Soc.*, **18** (1) (2010) 21-26.