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Abstract: Knebelman' studied and defined collineations and motions in
generalized spaces. Levine? studied motions in linearly connected two
dimensional spaces. Tokano® studied on the existence of Affine mouon in
a space with recurrent curvature tensor. Further, Negi and Rawat* studied
Affine motion in an Almost Tachibana recurrent space. Rawat and
Silswal® studied Theory of Lie-derivatives and motions in Tachibana
space. In the present paper, we have studied Lie-derivative of a linear
connexion and various kinds of motions (Affine motion, Projective
motion and Conformal motion) in a Kaehlerian recurrent space of first
order also several theorems have been established and proved therein,
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1. Introduction

Let X,, be a 2n-dimensional almost complex space and F, ' its almost-

!

complex structure, then by definition, we have

(1.1) FSF =6,

e J

An almost- complex space with a positive definite Riemannian metric g,
satisfying

(12) grsFirF:'s :gjw
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is called an almost- Hermitian space. From (1.2), it follows that  F, =g F/

is skew- symmetric.
If an almost- Hermitian space satisfies

(13) V,F,+VF, +V,F,=0

hi " i 3

where V denotes the operator of Covariant derivative with respect to the

symmetric Riemannian Connection, then it is called an almost-Kaehloriai
space and if it satisfies

(14) V,F, +V,F, =0,

fy
then it is called a K- space. In an almost- Hermitian space, if’

(15) V F,=0 or F, =0,

i ih.

then it is called a Kaehlerian space or, briefly a K, - space.

A Kachler space K, satisfying the relation

R" -AR" =0 or

ik .a a” vifk

(1.6) V,R' - AR =0,

ifk a” vijk

for some non-zero vector A4

«?

will be called a Kaehlerian recurrent space of
first order. It is called Ricci-recurrent (or, semi-recurrent) space of first
order, if it satisfies

R,,— AR, =0 or
(1.6a) VR, -4R, =0.

Multiplying the above equation by g”, we have

R, -AR=0 or
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(1.6b) V,R-1R=0.
Remark (1.1). From (1.6) and (1.6a), it follows that every Kachlerian
recurrent space of first order is Ricci-recurrent space of first order, but the
converse is not necessarily true.

2. Lic-Derivative of a Linear Connexion

Let us consider a L, (i.e. the space provided with a linear connexion
[%,($) an infinitesimal point transformation

@ "X = XX (E)dl

the deform of a contravariant vector u* is defined by

def
(2.2) w (&) =u('$)

and that of the lincar connexion ¥

Jid

by

. def
(2.3) T4 ,(8) = TL(E).

If we now denote by, J the covariant differential with respect to 14 and

e

by 'S the covariant differential with respect to T, , we have

A

Sur(E)=d'ut (&) +' T (Et(£)dE"
=du* (E)+TL (En’ (E)d g
=ou'(*&).

On the other hand, for the deform of Su* , we have
(8wt (£))= sur('S).

From these two equations, we have
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(2.4) "Slut="0ur (¢,

holding with respect to every coordinate system and consequently
(2.5) ’5(u’+£u")dt'-—"5u" +Lu*dt

with respect to (x). Thus, we have

Theorem 2.1. The covariant differential of the deform of a contravariant
vector with respect to the deform linear connexion is equal to the deform of
the covariant differential of the vector with respect to the original linear
connexion.

Since

S(u rgutdr)=d(ur + £urar) +(T, ETLdi(u¥ +£urdr)de”
= out + 5 £utdr v (15, Ju'dg

We have from (2.5)

(2.6) £ou* -5 Lur :(f r;)u*dgﬂ, .

Taking account of ££*' =0, we have from (2.6)

Q.7 £V, uf -V, gut = (£, ut.

P HA

Formula (2.7) can be generalized for a covariant vector @, and for a

general tensor P** as follows:
2.8) £V,0,-V,t0, =—(§Ffu)col..
(2.9) £V, P -V, £P¥ = (£T% | PP+ (£T4, ) P2 - (€5, | P2

From these equations, we have
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Theorem 2.2. In order that (2.1) be an affine motion inan L, , itis

necessary and sufficient that the covariant differentiation and the Lie
derivation with respect to (2.1) be commutative.
Now since the deformed linear connexion is given by

HA HA

(2.10) T =07 +§I"" dt

it follows immediately that

(2.11) 'Sk ’:Sjl+§Sjldt

It is also evident that the deformed curvature tensor is given by

2.12) 'RY = RX

VUA VA

+£R* dt..

VA
In fact substituting (2.10) into

'R%, =20,T% +2'TL T

vpA pA "

We find

(2.13) "RE, =RZ, +(V,£T% -V, £T% + 255 £T} ).

vud s

On the other hahd, by virtue of Ricci identity

2V,V, v} = R, 00 = RE,U5 =280V U

(70 Vi

and of the second Bianchi identity

VR =2S5'R.

v vup vu© oA ”

We find

V,£T%, -V, £T% 28, £T%, = V7V RY, = RI0% + R0

v ST HA P v VA p PA

x 4 x y2
+ Rvpiuﬂ +Rwul

or
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vid

(2.14) V,ETE, -V, £} -2S5 £17, =£R;

3. Motions in a Kachlerian Recurrent Space of First Order

Let us consider n(= 2m) dimensional Kachlerian space K covered by a

set of neighbourhoods with coordinates &7 and endowed with the
fundamental quadratic differential form

(3.1 ds’ =g, (E)dErdER,

where the indices x4, u,v ......, runovertherange 123,. ... . 0o

¥ 2

Inthe space K, referred to &7, we consider a point transformation
(3.2) T:'¢% = f(&):Det(9,E%) 0.

which establishes a one-to-one correspondence between the points of a
region R and those of some other region * R, where 0, stands for the

partial derivation —.

During this point transformation, a point £# in R is carried to a point *&
in *R andapoint &*+d&* in R toapoint *E* +déX in *R. Ifthe
distance d’s between two displaced points *&*  and  *&¥ +dEY s
always equal to the distance between the two original points £*  and

EY+dEX  the point transformation (3.2) is called a motion or an isometry
in the space K

n°

(). Affine Motion in X,
Consider a Kaehlerian space K, provided with a linear connexion
[“(6). Ina K, the parallelism between a vector u* ata point &*

n

and a vector u* +du® ata pbint E¥ +d&* is defined by

€,

def
(3.3) Su* =du* +THu*dE" = 0.
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When we effect a point transformation (3.2), the differentials d&* at £&°
are transformed into the differentials

3.4) dé&* :gfg,—dév

at “£%. Now if we make the condition that the vector ¥ at &7 s
transformed from &% to "' in the same way as the linear elements

dé*  at &%, then the corresponding vector *EX s

X
¥,

65 i =

(S)-

Definition. When a point transformation (3.2) transforms any pair of
parallel vector into a pair of parallel vectors, then (3.2) is called affine
motion in ¥, .

For an affine motion, we must have

def m m
3.6)  FW(E=du (H+TLHW (AL =0.

(ii). Projective Motion in K, .
Let us consider a Kaehlerian space K, with a symmetric linear

connexion ['%, .The geodesic of the space is given by

dzé;l dgp d:ﬂ ] dé:l
3.7 +I*, =2 =a(t)—.
(37 > M odt dt a(1) dt

Definition. When a point transformation (3.2) transforms the system of
geodesic into the same system, then (3.2) is called a projective motion in
K, .

The necessary and sufficient condition that (3.2) be a projective motion
ina K, is that the Lie-difference of I, with respect to (3.2) has the

form

(3.8) *rfu'rfu = A;;fpl +Afp;n
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where  p, is a covariant vector.
When (3.2) is an infinitesimal transformation

(3.9) X =E L0 (&),
then the condition is

(3.10) 0%, =Aip, + 4ip,.

(iii). Conformal Motion in K, .

Definition. When a point transformation (3.2) does not change the angle
between two directions at a point, then (3.2) is called a Conformal motion in
the K, .

The necessary and sufficient condition that (3.2) be a conformal motion
in a K, is that the Lie-difference of g,, Wwith respect to (3.2) be

proportional to g, .

(3‘11) *g/il_giz =2¢g/{15

where ¢ is a scalar.
When (3.2) is an infinitesimal transformation, then the condition is

(3.12) £g, =20g,,.

Thus, we have

Theorem (3.1). 4 necessary and sufficient condition that (3.9) be a
conformal motion in a space K, is that the Lie-derivative of *g, , bea

multiple of g, .

Theorem (3.2). A4 motion in a Kaehlerian space K, is an affine

motion.
Proof. To prove this, we apply the formula (2.9) to the fundamental

tensor g, ,
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£(V,2,)-V, (fgu):-(%{ﬂplﬂgm "[%{#pl}]gw

from which

X

(3.13) %{,u 4

| .
}Zzglp [iv,u f’glp +Vﬂ. %gyp -fog,u/l}‘

This equation shows that £g = 0 implies £{ Xﬂ.} =0.
193 v Ill

Note: Under some global conditions £{ Z/’L} =0. implies £g, =0.

Y7

Theorem (3.3). For a motion in a Kaehlerian space K, the Lie-
derivatives of the curvature tensor and its successive covariant derivatives
vanish.

Proof. Applying the formula (2.14) to the Christoffel symbol, we have

p P
3.14 vV £ -V £ =£K? ,,
1y ""{# 1} "‘v{v /1} v

where K* . is the curvature tensor of K . Thus for a motion, we have
VA n

(3.15) £KX =0

vuid T Y

On the other hand since a motion is an affine motion, the covariant
derivation and the Lie-derivation are commutative. Thus from (3.15) , we
obtain

(3.16) £V K%, =0,£V,V

w0 tvui

K%, =0,

w2

This proves the theorem.
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4. Theorems on Projectively or Conformally Related Spaces

Theorem (4.1). If two Kaehlerian spaces K, and *K  are in
geodesic correspondence and if K, admits a group of motions, *K,  alsc
admits a group of motions.

Proof. Considering two Kachlerian spaces K, and * K, which are
in geodesic correspondence. Then denoting the Christoffel symbols of them

by { X,} and *{ Z, [ respectively, we have
u A i A

Butsince K, and *K, are both Kaehlerian, the vector ¢, should be

a gradient. Thus putting p, = 15, logg, we get
p g »p 5 9 g g

(4.2) {uz }—J £ %4%./4/faalog¢+é~z4f8u log @

We now assume that the space K, admits a motion with symbol # f.

Then, we have

- ; p
fgu =V, +V oo =060 +0v,- 2{/1 Z’} =0.

Consequently on using (4.2), we have

£g,, =V, +V,=0,0 +0, ,[2 {Ap}_% AP3, logg - % A0, log¢}up
U X B

.:¢-{ai(¢Ut)+ax(¢ui)nz‘{£}¢up}.
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*

Thus denoting by * g, the fundamental tensor of *K, ~and £/f=0

the symbol defined by ¢v, in * K, we have
£, =4 g,

Theorem (4.2). [fa K, admits a G, of motions such that the rank of

¥

v in a neighborhood is equal to r <n, then there exist n-v K"

corresponding to  n—r  independent solutions of £ p* =0, which are

conformal to the given K, and admit the same group as a group of motions

Proof. Let us consider a Kachlerian space K, which admits a -

parameter group G, of motions such that the rank of v} 1s in a certain
neighbourhood is cqual to  # <n . Then, we bave £g, =0. In the same

group G, as a group of motions, it is necessary and sufficient that there

exista function p’ suchthat  £(p’g, )=0 or £p°=0.

But on the other hand (£i'i) P’ =c, £p’ and consequently £p° =0

admits  n—r independent solutions.
Note: The a-rank of the £g, is the rank of the matrix £g, where a

denotes the rows and 4 , denotes the columns.
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