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Abstract: The aim of this paper is to consider a new approach for 

obtaining common fixed point theorems in Fuzzy metric spaces by 

subjecting new continuity condition, conditionally reciprocally 

continuous selfmappings introduced by Pant
1
, which is independent of the 

known continuity definitions. We give examples and initiate the 

application of, conditionally reciprocally continuous selfmappings for 

investigating fixed points of mappings in fuzzy metric space.  
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1. Introduction 
 

The introduction of the notion of fuzzy sets by Zadeh24 in 1965 laid 

down the foundation of fuzzy mathematics and since then the discipline of 

fuzzy mathematics has witnessed tremendous growth in diverse directions.  

Kramosil and Michalek9 in 1975 introduced the notion of fuzzy metric 

space.  George and Veeramani6 modified the definition of fuzzy metric 

space due to Kramosil and Michalek9 with a view to introduce a Husdorff 

topology on fuzzy metric spaces.  Grabiec7 in 1988 extended the well known 

Banach contraction theorem to fuzzy metric spaces.  In recent years, 

interesting generalizations of the Grabiec Fuzzy Contraction Theorem7 have 

been obtained by Cho et al4, Balasubramaniam et al2, Sharma18, Singh and 

Chauhan19 and Vasuki22.  Sharma et al17 studied fixed points of fuzzy 

mappings in linear metric spaces and Sharma18 have also discussed the 

investigations into the possible connection between existence and unicity of 

fixed points and functioning of biological systems.  In an interesting 

development, Vasuki23 in 1999 extended the well known Boyd and Wong3 

fixed point theorem to fuzzy metric spaces by introducing a fuzzy analogue 
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of the φ-contractive condition of Boyd and Wong3.  Recently, Chugh and 

Kumar5
 further generalized the Vasuki Fuzzy Contraction Theorem by 

extending it to four mappings. 
 
 

In the study of reciprocal continuity, Pant11 has established a situation in 

which a collection of mappings has a fixed point which is a point of 

discontinuity for all mappings. The utility of reciprocally continuous 

selfmaps in diverse settings to establish fixed point theorems can be 

understood from the fact that while studying the common fixed point 

theorems which may admit discontinuity at the fixed point. 
 

 

Two selfmaps f and g of a metric space (X, d) are called reciprocally 

continuous11, whenever {xn} is a sequence in X satisfying limnfgxn = f t and  

limngfxn= g t for some t in X such that limnfxn =f t and  limngxn=g t. If f and g 

are both continuous then they are obviously reciprocally continuous but the 

converse is not true11. 

Two selfmaps f and g of a metric space (X, d) are called conditionally 

reciprocally continuous (CRC)13, whenever {xn} is a sequence in X satisfying 

limnfxn =  limngxn is nonempty, there exists a sequence {yn} satisfying limnfyn 

= limngyn = t for some t in X such that limnfxn = limngxn = t. 

Two selfmaps f and g of a metric space (X, d) are called g- compatible16, 

if limnd(ffxn, gfxn)=0, whenever {xn} is a sequence in X such that limnfxn =  

limngxn = t for some t in X and two selfmaps f and g of a metric space (X, d) 

are called f- compatible16, if limnd(fgxn, ggxn)=0, whenever {xn} is a 

sequence in X such that limnfxn =  limngxn = t for some t in X. 
 

Two selfmaps f, g of a metric space (X, d) are called R-weakly 

commuting10 if there exists some real number R > 0 such that d(fgx, gfx)               

≤ R(d (fx, gx)) for all x in X. f and g are called pointwise R-weakly 

commuting if given x in X, there exists R > 0 such that d(fgx, gfx) ≤ R(d(fx, 

gx)). 
 

Two selfmaps f and g of a metric space (X, d) are called compatible [8] 

if limnd(fgxn, gfxn) = 0, whenever {xn} is a sequence in X such that limnfxn =  

limngxn = t for some t in X. It is clear from the above definition that f and g 

will be noncompatible if there exists at least one sequence {xn} such that 

limnfxn = limngxn = t for some t in X but limnd(fgxn, gfxn) is either non-zero or 

non-existent. Compatibility implies pointwise R-weak commutativity since 

compatible maps commute at their coincidence points.  

In the present paper, we obtain common fixed point theorems for 

conditionally reciprocally continuous selfmappings. We now give some 

relevant definitions. 
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Definition 1:  Let X be any set. A fuzzy set in X is a function with 

domain X and values in  [0, 1]. 
 

Definition 2 :  A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is defined 

to be a continuous t-norm if ([0, 1], ∗) is an abelian topological monoid with 

unit 1 such that a∗b ≤ c∗d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].  

Examples of t-norm are a∗b = ab and a∗b = min{a, b}. 
 

Definition 3:  A 3-tuple (X, M, ∗) is called a fuzzy metric space if X is 

an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set in X
2
 × [0, ∞) 

satisfying the following conditions for all x, y, z ∈ X and t, s > 0, 

(i) M(x, y, 0) = 0 

(ii) M(x, y, t) = 1 for all t > 0 if and only if x = y 

(iii) M(x, y, t) = M(y, x, t) ≠ 0 for t ≠ 0 

(iv) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s) 

(v) M(x, y, .) : [0, ∞) → [0, 1] is continuous. 

In this paper, (X, M, ∗) will denote a fuzzy metric space in the sense of 

the above definition with the following condition 

(vi) limt → ∞M(x, y, t) = 1 for all x, y ∈ X and t > 0. 

 

M(x, y, t) can be thought of as the degree of nearness between x and y with 

respect to t.  We identify x = y with M(x, y, t) = 1 for all t >0 and M(x, y, t) 

= 0 with d(x, y) = ∞.  The following example shows that every metric 

induces a fuzzy metric. 
 

Example 1:  Let (X, d) be a metric space.  Define a∗b = ab or a∗b = 

min{a, b} and for all x, y ∈ X, t > 0 

 

                        ( )
( )

,  
,

,  
t

M x y t
t d x y

=
+

. 

 

Then (X, M, *) is a fuzzy metric space and the fuzzy metric M induced by 

the metric d is often referred to as the standard fuzzy metric. 
 

Definition 4:  If (X, M, *) is a fuzzy metric space, a sequence {xn} in X 

is said to converge to a point x in X (denoted by limn → ∞ xn = x) if limn → ∞ 

M (xn, x, t) = 1 for all t > 0. 
 

Definition 5:  If (X, M, *) is a fuzzy metric space, a sequence {xn} in X 

is called a Cauchy sequence if limn → ∞M (xn+p, xn, t) = 1 for all p > 0, t > 0.  

A fuzzy metric space in which every Cauchy sequence is convergent is said 

to be complete. 
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Definition 6:  A sequence {xn} in a fuzzy metric space (X, M, *) is a 

Cauchy Sequence if for each ε > 0, t > 0, there exists n0 ∈ N such that M(xm, 

xn, t) > 1 - ε for all m, n ≥ n0, where N is the set of natural numbers. 

G. Song [21] has proposed the following definition 
 

 Definition 7:  A sequence {xn} in a fuzzy metric space (X, M, *) is 

defined to be a Cauchy sequence if M(xn + p, xn, t) → 1 (for all t > 0) as n → 

∞ uniformly on p ∈ N, N being the set of natural numbers. 
 

Definition 8:  A mapping f of a fuzzy metric space (X, M, *) is called 

continuous if limnfxn = fz whenever {xn} is a sequence in X such that limnxn 

= z. 

Results 
 

 

Theorem 1:  Let (X, M, *) be a complete fuzzy metric space and let f 

and g be conditionally reciprocally continuous selfmappings satisfying the 

conditions 

(i)  fX ⊂  gX  

(ii) M(fx, fy, t) ≥ {M(gx, gy, t)} 

(iii)M(fx, ffx, t) > {M(gx, ggx, t)} whenever gx ≠ ggx 

 If f and g are  either compitable or g – compitable or f – compitable  then f 

and g have a unique common fixed point. 
 

Proof:  Let x0 be any point in X. Then fX ⊂  gX, define sequences {xn} 

and {yn} in X given by the rule  sn = fxn = gxn+1, n = 0,1,2,… . 
We claim that { sn } is a Cauchy sequence. Using (ii) we obtain  

M(fxn, fxn+1, t) ≥ {M(gxn, gxn+1,t}, t  > 0 

M(sn, sn+1, t) ≥ {M(sn-1, sn, t}, t  > 0 

 

(1)                            M (sn, sn+1, t) ≥ M(sn-1, sn, t). 

 
                                                     

To prove that {sn} is a Cauchy sequence we prove that (1) is true for all n ≥ 

n0 and for every m∈N,  

 

(2)                            M (sn, sn+m, t) > 1-λ. 

 

Here we use induction method. 

M(sn, sn+1, t) ≥ M(sn-1, sn, t) ≥ M(sn-2, sn-1, t) ≥ …….  ≥ M(s0, s1, t) → 1as n→ 

∞ i.e. for 0 ≤  λ <1, t  > 0, we can choose n0 ∈ N, such that M(sn, sn+1, t) > 

1-λ. Thus (2) is true for m = 1. Suppose (2) is true for m then we shall show 

that it is also true for m + 1. By the definitions of fuzzy metric space, we 

have 
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                (sn, sn+m+1, t) ≥ {M(sn, sn+m, t), M (sn+m, sn+m+1, t)} > 1-λ . 

 

Hence (2) is true for m + 1. Thus {sn} is a Cauchy sequence. By 

completeness of (X, M, *), { sn } converges to some point t in X. Moreover, 

limnfxn = limngxn = t. Since conditionally reciprocally continuous 

selfmappings of f and g implies that limnfxn = limngxn = t for some t in X 

there exists a sequence {yn} satisfying limnfyn = limngyn = u such that. 

limnfgyn = f u and  limngfyn= gu.  Since fX ⊂  gX, for each yn there exists a zn  

in X such that limnfyn = limngzn. Thus   limnfyn → u, limngyn → u. Therefore, 

we have 

  

(3)                     limngyn → u, limnfzn→ u limnfyn = limngzn→ u.  

                                                                                           

Since f and g are compatible, then M(fgyn, gfyn, t) = 1, that is fu = gu. 

Again , since compatibility implies commutativity at coincidence points, we 

get ffu = fgu = gfu = ggu. If fu ≠ffu, Using (iii), we get   

 

                           M(fu, ffu, t) >  max{M(gu, ggu, t)]} = M (fu, ffu, t) 

 

a contradiction.  Hence, fu = ffu and fu = ffu = fgu =gfu = ggu.  Hence fu is 

a common fixed point of f and g.  The case when fX is a complete subspace 

of X is similar to the above case since fX ⊂ gX. Since f and g are g - 

compatible, then  M(ffyn, gfyn,t) = 1, that is  ffyn →gu using (ii), we get 

 

                  M(fu, ffyn,t) ≥ max{M(gu, gfyn,t)} = M(gu, gfyn,t). 

 

On letting n→ ∞ we get fu = gu. Now g – compatibility implies commutativity  

at coincident points, we obtain fgu = gfu and fu ≠ ffu = fgu =gfu = ggu. Using 

(iii), we get  
 

                  M(fu, ffu, t) >  max{M(gu, ggu, t)]} = M (fu, ffu, t) 
 

a contradiction.  Hence, fu = ffu and fu = ffu = fgu =gfu = ggu.  Hence fu is a 

common fixed point of f and g.  The case when fX is a complete subspace of X 

is similar to the above case since fX ⊂ gX.  

Since f and g are f - compatible, then  M(fgyn, ggyn,t) = 1, by (3) ggyn = 

gfyn→gu we get fgyn→gu Using (ii), we get 
 

            M(fu, fgyn, t) ≥  max{M(gu, ggyn, t}= M (gu, ggyn, t). 
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On letting n→ ∞ we get fu = gu, since h < 1. Now f – compatibility implies 

commutativity at coincident points, we obtain fgu = gfu and fu ≠ ffu = fgu =gfu 

= ggu. Using (iii), we get  
 

             M(fu, ffu, t) >  max{M(gu, ggu, t)]} = M (fu, ffu, t) 
 

a contradiction.  Hence, fu = ffu and fu = ffu = fgu =gfu = ggu.  Hence fu is a 

common fixed point of f and g.  Hence the theorem. 

Example 2:  Let X = [2, 20] equipped with the fuzzy metric on (X,M,*).  

Define a∗b = ab or a*b = min{a, b}, a, b in [0, 1] and for all x, y ∈ X, t > 0, 

M(x, y, t) =  
| |

t

t x y+ −
. 

 

Let f, g: X → X be defined by 

 

f2 = 2,  if x = 2 or > 5,               fx = 6 if 2 < x ≤ 5,  

g2 = 2,  gx = x + 4 if 2 < x ≤ 5,  gx = (4x + 10) /15 if x > 5. 
 

 
                   

Then f and g satisfy all the conditions of Theorem 1 and have a unique 

common fixed point x = 2.  In this example fX = {2} U {6} and  gX = [2, 6] 

U {7}. It may be seen that fX ⊂  gX. It can be verified also that f and g are 

conditionally reciprocally continuous, let   {xn} be a sequence given by  xn = 

2. Then f xn 2, gxn  Also fg xn 2 = f2 = 2,   gfxn . Hence f 

and g are conditionally reciprocally continuous.  In this case, if we have xn = 

2 the mappings f and g are compatible since the compatibility implies 

commutativity at coincidence points. If we consider by  xn = 5+1/n : n>1, 

then  f xn 2, gxn  Also fgxn 6,   gfxn . Hence f and g are non-

compatible. Similarly considering again xn = 5+1/n : n >1, then  f xn 2, 

gxn  Also fgxn = f(2+1/n) = 6 ≠ f2, gfxn  = g2 = 2. Therefore gfxn = g2 

fgxn ≠ f2. Hence f and g are not reciprocally continuous. The mappings f 

and g are g – compatible and f – compatible also. 

 

Theorem 2:  Let (X, M, *) be a complete fuzzy metric space and let f 

and g be conditionally reciprocally continuous selfmappings satisfying the 

conditions 

 

(iv) fX ⊂  gX 
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(v) M(fx, fy, t) ≥ {M(gx, gy, th)}, 0 ≤  h <1, t  > 0. 

 

 If f and g satisfy the property (E.A) and the range of either f or g is a 

complete subspace of X, then f and g have a unique common fixed point. 
 

Proof:  Since f and g satisfy the property (E.A), there exists a sequence 

{xn} such that fxn → t  and gxn → t for some t in X.  Since fX ⊂ gX, there 

exists some point u in such that t = gu where  t = limn gxn.      

Since conditionally reciprocally continuous selfmappings of f and g 

implies that limnfxn = limngxn = t for some t in X there exists a sequence 

{yn} satisfying limnfyn = limngyn = u such that. limnfgyn = f u and  limngfyn= 

gu.  Since fX ⊂  gX, for each yn there exists a zn  in X such that limnfyn = 

limngzn. Thus limnfyn → u, limngyn → u. Therefore, we have  

 

(4)             limngyn → u, limnfzn→ u, limnfyn = limngzn→ u.                                             

 

Since t ∈ fX and fX ⊂  gX, if u in X such that t = gu where t= limngxn. If fu  

≠   gu, the inequality  

 

      M(fxn, fu, t)  ≥  max{M(gxn, gu, th}. 

 

On letting n→ ∞ yields, M(gu, fu, t)  ≥  max{M(gu, gu, th}. Hence fu = gu. 

Again M(ffu, fgu, t) ≥ max{M(gfu, ggu, th)}, that is, ffu = fgu and ffu = 

fgu= gfu = ggu. If fu ≠ ffu, using (v), we get M(fu, ffu, t) >   max{M(gu, 

gfu, th)} = M (fu, ffu, th) 

a contradiction.  Hence, fu = ffu and fu = ffu = fgu =gfu = ggu.  Hence fu is 

a common fixed point of f and g.  The case when fX is a complete subspace 

of X is similar to the above case since fX ⊂ gX. Hence we have the 

theorem.  
 

Example 3:  Let X = [2, 20] equipped with the fuzzy  metric on (X, M, *).  

Define a∗b = ab or   a*b = min{a, b}, a, b in [0, 1] and  

 

for all x, y ∈ X, t > 0, ( ) 
|

,  
|

,M x y t
t

t x y
=

+ −
. 

 

Let f, g: X → X be defined by 

f2 = 2,   if x = 2 or > 5,               fx = 6 if 2 < x ≤ 5,  

g2 = 2,    gx = x + 4 if 2 < x ≤ 5,   gx = (4x + 10) /15 if x > 5. 
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Then f and g satisfy all the conditions of Theorem 1 and have a unique 

common fixed point x = 2.  In this example fX = {2} U {6} and gX = [2, 6] 

U {7}. It may be seen that fX ⊂  gX. It can be verified that f and g are 

satisfy the property (E.A). 

 

 Remark: Property (E.A) of Aamri and Moutwakil
1
 is more general then 

the notion of noncompatibility. It is however, worth to mention here that if 

we take noncompatibility aspect instead of the property (E.A) we can show, 

in addition, that the mappings are discontinuous at the common fixed point. 

Aforesaid results illustrate our assertion in the fuzzy metric fixed point 

theory. This is, however also true for the study of fixed points in metric 

space. 
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