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Abstract: In present problem a similarity solution for the propagation 

of spherical shock wave in a mixture of non-ideal gas and small solid 

particles with heat radiation flux is obtained. In course of derivation 

solid particles are considered as pseudo-fluid and the equilibrium flow 

condition is assumed to be maintained. The total energy of the 

shocked gas (between shock front and the inner expanding surface) is 

assumed to be increasing with time. The effects due to presence of 

non-idealness parameter, the mass concentration of the solid particles 

and volumetric extension of the solid particles are investigated in 

presence of heat radiation.  
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1. Introduction 

  

The problem of propagation of shock waves in dusty gases has attracted 

many research workers because of its wide range of applications in nozzle 

flow, lunar ash flow, coal-dust-gas explosions, supersonic flight in polluted 

air, collision of coma with a planet and many other engineering problems 

(Pai1, Higashino and Suzuki2, Miura and Glass3). The propagation of self-

similar shocks in gases has been studied by many authors such as Taylor4, 

Carruset al5, Rogers6, Sedov7, Elliot8, Sakurai9, Korobeinikov10 and many 

others, under different physical situations. By using the same method of 

similarity solution the propagation of shock waves in dusty gases has been 

studied and the effects due to presence of solid particles are investigated by 

Suzuki et al11, Pai et al12, Steiner and Hirschler13, Vishwakarma and 

Pandey14. Taking into account the effects due to radiation heat transfer, 

Gretler and Regenfelder15, 16 have obtained similarity solutions for strong 

shock waves in a dust-laden gas. This problem of propagation of shock 

waves in dusty gases has also been studied by Ojha and Srivastava17 by 



    
 

using energy hypothesis of Thomas18. In all the above studies dusty gas is 

assumed to be a mixture of small particles and a perfect as. 
 

In most of the problems associated with explosion waves the assumption 

of the gas to be an ideal gas is not true. Taking into account the non-

idealness of the gas, the problem of propagation of explosion waves has 

been studied by Anisimov and Spiner19, Ranga Rao and Purohit20, Singh21, 

Ojha22, Vishwakarma and Nath23 and Ojha& Srivastava24. Considering the 

dusty medium as the mixture of non-ideal gas and small solid particles 

Vishwakarma and Nath25 have generalised the solutions given by Steiner 

and Hirschler13 for the propagation of strong shock wave in a mixture of a 

perfect gas and small solid particles driven out by a piston moving 

according to power law. 
 

At high temperature, intense radiation heat transfer takes place behind a 

strong shock and therefore an assumption of zero temperature gradient 

throughout the flow may be taken Korobeinikov10, Gretler and 

Regenfelder16. Also at high temperature gas being ideal is not correct. 

Therefore, in present problem, our aim is to present a similarity solution for 

the propagation of strong shock wave in a mixture of non-ideal gas and 

small solid particles, taking into account the effect of radiation flux (Gretler 

and Regenfelder16). 
 

Following above studies, the solid particles are considered as a pseudo-

fluid and it is assumed that the equilibrium flow condition is maintained. 

The total energy of the flow between the shock front and the inner 

expanding surface (a contact surface or a piston) is supposed to be 

increasing with time. It is investigated that in absence of viscosity how the 

parameter of non idealness of the gas in the mixture b , the mass 

concentration of the solid particles kp and the ratio of the density of the solid 

particles to the initial density of the gas G in presence of radiation heat flux 

affect the flow field behind the shock.  

 

2. Fundamental Equations and Boundary Conditions 
  

The non-steady, one-dimensional flow field is a function of two 

independent variables: the time t and the space co-ordinate r. The basic 

conservation equations of mass, momentum and energy for one-dimensional 

unsteady spherically symmetric flow of a mixture of non-ideal gas and small 

solid particles with radiation heat-flux in Eulerian co-ordinates are 

expressed as (Gretler and Regenfelder16, Ojha and Srivastava24).  
 

 (2.1)  
2

0
u u

u
t r r r

ρ ρ ρ
ρ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
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where ρ  is the density, u is the velocity, p is the pressure, e is the internal 

energy per unit mass and F is the radiation heat flux.  
 

 The thermal radiation may be expressed by the one-dimensional 

radiation-transport equation (Vincenti and Kruger26). Considering the 

radiation diffusion model for an optical thick medium and assuming local 

thermodynamic equilibrium, the radiation transport equation may be written 

as  
 

(2.4)   316

3
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σ
α

∂
= −
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where σ is the Stefan-Boltzmann constant and 
Rα  is the Rosseland mean 

absorption coefficient. 
 

The equation of state for a mixture of non-ideal gas and small solid particles 

may be written as (Pai et al12, Vishwakarma and Nath25), 
 

 

(2.5)   
(1 )

1 (1 ) '
1
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k
p b k R T

Z
ρ ρ

−
 = + − −

 

 
 

where pk  and Z  are the mass concentration and volume fraction of solid 

particles in the mixture, b is the internal volume of the molecules of the gas, 

R΄ is the gas constant and T is the temperature. 
 

 

 The relation between Z  and the mass concentration pk  of the solid 

particles in the mixture taken as a constant in the whole flow field, is given 

by (Pai et al12), 
 

(2.6)   s p

p

Z
k

ρ

ρ
=  

where 1

1

Z
Z ρ

ρ
= , while s p

ρ  is the species density of the solid particles and 

1Z and 1ρ are the initial values of Z  and ρ  respectively. Also, we have the 

relation 
 

(2.7)   
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where 
1

p

p

k

k
δ =

−
  and 

s p

g

p
G

ρ
=  is the ratio of the density of solid particles to 

the species density of the gas. G represents volumetric extension of dust in 

the mixture. 
 

 The internal energy per unit mass of the mixture may be written as 

(Vishwakarma & Nath25) 
 

(2.8)   
(1 )

( 1) {1 (1 )}
p

p Z
e

b kΓ ρ ρ
−

=
− + −

 

 

where Γ  is the ratio of the specific heats of the mixture and is given by 
 

(2.9)   
'
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γ δ β
Γ

δ β
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In (2.9) 
p

v

c
Z

c
γ =  and ' s p

v

c

c
β =  are constant parameters;  

sp
c  being the specific 

heat of solid particles while 
p

c and 
vc are the specific heats of gas at 

constant pressure and constant volume respectively. 
 

For an isentropic change of state of the mixture, we may write the speed 

of sound in the mixture of non-ideal gas and small solid particles as 

(Vishwakarma et al23) 
 

(2.10)   
{ }

{ }
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p
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Z b k p
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Z b k

Γ Γ ρ
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The absorption coefficient Rα  is assumed to vary with temperature only and 

therefore it can be written in the form of power law (Gretler and 

Regenfelder (2002)) 
 

(2.11)   
0

R

R R

o

T

T

β

α α
 

=  
 

 

 

where the subscript 0 refers to a reference state. In order to obtain a self-

similar solution, the exponent Rβ  must satisfy the similarity requirements. 
 

At the shock front, we have the usual equations for conservation of 

mass, momentum and energy (Zeldovich and Raizer27, Ojha and Srivastava 
24

) 
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(2.12)   
1 2 2( )U U uρ ρ= −  

 

(2.13)   2 2
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1 1 2
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(2.15)   1 2T T=  
  

where the subscripts 2 and 1 denote conditions just behind and ahead of the 

shock respectively and U denotes the shock velocity. From (2.12) - (2.15), 

we may write 
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where
12

1 2

1

U
M

p

ρ
γ

 
=  
 

 is the shock - Mach number referred to the frozen speed 

of sound 
1

1 2

1

pγ
ρ

 
 
 

and  1b bρ= . The quantity (0 1)β β< <  is given by the 

relation 
 

(2.20)
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Suppose that the total energy of the flow field behind the shock is time 

dependent and varying as (Rogers6) 
 

 

(2.21)   0 ( )q
E E R t=  , 0q ≥  

 



    
 

where E0 and q are constants. Equation (2.21) includes blast waves when

0q = . The positive values of q correspond to the class in which the total 

energy increases with time. This increase can be achieved by the pressure 

exerted on the fluid by an expanding surface (a contact surface or a piston). 

Thus the flow is headed by a shock front and has an expanding surface as an 

inner boundary. 
 

3. Similarity Solutions 
 

 The basic equations can be made dimensionless by transforming the 

independent variables for space r and time t into the similarity variable 

(Rogers
6
) 

 

(3.1)   k t
r eη −=  

 

where k is an arbitrary constant. If the flow is headed by a shock front given 

by 
0η η= , a constant, then the shock radius is given by  

 

(3.2)   0

k t
R eη=  

 

and shock velocity is given by  
 

(3.3)   
dR

U kR
dt

= =  

 

Let the solution of the problem exist in similarity form as 
 

(3.4)   ( )u Uf x=  
 

(3.5)   1 ( )g xρ ρ=  
 

(3.6)   
2

1 ( )p U h xρ=  
 

(3.7)   3

1 ( )F U Q xρ=  

 

where
0

r
x

R

η
η

= =  and 1ρ is density of the undisturbed mixture just ahead of 

the shock front. The total energy carried by the shock is given by  
 

(3.8)   
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4
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where 
p

r  is the radius of the inner expanding surface. Using similarity 

transformations (3.4) – (3.7) and equation (2.8) in equation (3.8) we get 

 

 

(3.9)   
0

1
3 2 2 21

1

(1 )1
4

2 ( 1){1 (1 )}x
p

Z g h
E R U g f x dx

b g k
π ρ

 −
= + 

 Γ − + − 
∫  

 

where 0
x is the co-ordinate of the expanding surface. From equations (2.21) 

and (3.9), it follows that the motion of the shock front is given by the 

equation 
 

(3.10)   
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where 
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Using equation (3.3) in equation (3.10) we have  
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Initially taking R ≥ 0 it is clear from equation (3.12) that value of q =5 

corresponds to the uniform expansion of a surface. Therefore, the solution 

of physical significance appears for the values of q which are between 0 and 

5. Using the similarity transformations (3.4) – (3.7), the fundamental 

equations (2.1) – (2.3) take the forms  
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From equation (2.11) and (2.4), we get  
 
 

(3.16)   
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with the help of equation of state (2.5) and similarity transformations (3.4) – 

(3.7) equation (3.16) gives 
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From equation (3.17) we observe that the similarity solution of the problem 

exist only when 
 

(3.18)   2Rβ =  
 

and therefore (3.17) reduces to  
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where 
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RΓ is the radiative non-dimensional heat transfer parameter which depends 

on the mean free path of radiation 
1

R
α

 

By solving equations (3.13), (3.14), (3.15) and (3.19) for ,
df

dx
,

dg

dx

dh

dx
 and 

dQ

dx  
we get  
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Substituting (3.3) – (3.7) in the boundary conditions (2.16) – (2.19) we have 
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Table.1: Variation of density ratio β for different values of 
pk , Γ  and b with β´ =1, γ=1.4, 

M= √10 and G=1,10,100. 
 

 

Sr. No. 
p

k
 

 

Γ  
 

G 
1

Z  
 

b  
 

β  

1 0 1.4 - 

 

0 

 

0 0.0714286 

0.04 0.0991395 

0.08 0.1167480 

2 0.1 1.36 

1 

 

0.1 

 

0 0.1714290 

0.08 0.1937170 

10 

 

0.0109890 

 

0 0.0824176 

0.08 0.1214760 

100 
0.0011099 

 

0 0.0725385 

0.08 0.1144200 

3 0.3 1.2799 

1 

 

0.3 

 

0 0.3714290 

0.08 0.3784350 

10 

 

0.0410900 

 

0 0.1125190 

0.08 0.1387050 

 

100 

0.0042670 

 

0 0.0756956 

0.08 0.1099880 

 

 

5. Results and Discussion 
 

 Table 1 shows the variation of density ratio β, for different values of 

1, ,
p

k ZΓ and b with 
' 1, 1.4β γ= = and G=1, 10, 100. It is clear from the 

table that as 
p

k increases, β increases for G = 1, but decreases for higher 

values of G. It is also clear from the table that an increase in the value of 

non-ideal parameter b also increases the value of β i.e. decreases shock 

strength. 
 

< 

 Equations ( ) ( )3.22 3.25− are integrated numerically with boundary 

conditions ( ) ( )3.26 3.29− for the values of
1, , ,pk Z bΓ and β given in table 1 

along with 2.5, 10q M= =√ and 10RΓ = and the results obtained are plotted in figs. 1 4−   
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 Fig. 1 gives variation of reduced velocity behind the shock wave 

Cases 1, 2 & 3 of the fig. 1 represent the variation of velocity in ideal and 

non-ideal gases in absence of solid particles which shows that the presence 

of non-ideal parameter increases velocity behind the shock within the range 

x = 1 to x = 0.95. Cases 4 – 5,  6 – 7, 8 – 9 give variation of velocity behind 

the shock in ideal and non-ideal dusty gases when volumetric extension G of 

the solid particles are 1, 10 and 100 with kp = 0.1 respectively. It is clear that 

in all these cases velocity increases in presence of non-ideal gas with a 

slight increase in range. It is also clear that increase in G decreases velocity. 

Cases 10 – 15 give variation in velocity behind the shock in ideal and non-

ideal gases when kp = 0.3 with volumetric extension G = 1, 10 and 100 

respectively. We observe that the nature of variation in velocity is the same 

as in previous cases but range of variation increases with increasing kp. 
 

 Cases 1, 2 and 3 of Fig. 2 are the variation of reduced density behind the 

shock wave in absence of solid particles in ideal and non-ideal gases. Cases 

4 – 5, 6 – 7,  8 – 9 give the variation of density in ideal and non-ideal dusty 

gases when kp = 0.1 and volumetric extension G of the solid particles are 1, 

10 and 100 respectively. In all these cases density increases faster in non-

ideal gases in comparison to ideal gases. Range of variation in these cases is 

x=1 to x=0.95. Cases 10-11, 12-13, 14-15 represent variation in density 

when kp = 0.3 with volumetric extension G=1, 10 and 100 respectively. 

Clearly the nature of variation is the same as in above cases with increasing 

range from x=1 to x=0.91. It is clear from the figure that in all the cases 

increase in density becomes faster with the increase in G. 
 

Cases 1, 2 and 3 of Fig. 3 are the variation of reduced pressure behind the 

shock wave in absence of solid particles in ideal and non-ideal gases which 

shows that decrease in pressure becomes slow with the increase of non-ideal 

parameterb . Cases 4-5 of the fig. 3 shows that pressure slightly increases 

and then decreases behind the shock when G=1 and kp = 0.1 while in cases 

6-7 and 8-9 pressure decreases continuously within the range x=1 to x=0.94. 

The decrease in pressure becomes faster with the increase of G. The 

presence of non-ideal parameter always slows down the decrease in 

pressure. Cases 10-11 show that pressure increases continuously behind the 

shock when G=1 and kp = 0.3 while in cases 12-13 and 14-15 we observe 

that pressure decreases with the range x=1 to x= 0.92 and then increases 

abruptly when kp = 0.3 and G=10 and 100 respectively. 
 

 Fig. 4 gives the variation of radiation heat flux behind the shock wave. 

It is clear from the figure that in all the cases the variation in flux first 

increases slightly and then decreases behind the shock within the range x=1 



    
 

to x=0.91 except in the cases 4-5 and 10-11 where G=1 and kp = 0.1 and 0.3 

respectively. In all the above cases the variation of the flux becomes faster 

in presence of non-ideal parameter. 
 

Thus, it is clear that the presence of small solid particles and non-idealness 

of the gas affect greatly the variation in flow variables behind the shock. 

 

       
 

Figure 1: variation of [1]f f  w. r. t. x  

 

 
Figure 2: Variation of [1]g g  w.r.t. x  
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 Figure 3: Variation of [1]h h w.r.t. x  
 

  
Figure 4: Variation of [1]Q Q  w.r.t. x  
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