
ISSN  0974-9373 
 

Vol. 13 No.3 (2009)         Journal of International Academy of Physical Sciences         pp. 217-229 

 

 

 

 

Strong Explosions in Two - Phase mixture of  

Radiating Gases  
 

Kanti Pandey and Kiran Singh 
Department of Mathematics & Astronomy, Lucknow University, Lucknow, India 

                                       
 

(Received June 23, 2009) 

 

Abstract: In present paper, strong – explosions about a line and a point in 

two-phase flows, when radiation effect is taken into account, are discussed. 

Similarity method discussed by Taylor and Sedov is used to find the 

solution which reduces the governing non- linear equations into ordinary 

differential equations. Using finite difference and Runge Kutta method, 

variation of pressure for cylindrical and spherical cases is obtained, and 

obtained results are compared through graphs. 
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Nomenclatures 
 

u – velocity of medium 

б  –  gas concentration 

б P  – particle concentration 

ρ – gas density 

ρ P – particle density 

ρM – mixture density 

pM – mixture pressure 

pR  – radiation pressure = Rp pM 

Rp – radiation pressure number 

p  – total pressure = pM + pR 

T  – temperature 

Ф – particle mass fraction 

γ – ratio of specific heats 

η – mass loading ratio 
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γ M = γ ( 1 + ζ η ) / ( 1 + γζη) - ratio of specific heats of mixture in     

equilibrium 

ζ – relative specific heat  ( c/ cp) 

c – specific heat of particle material 

cp  – specific heat of gas at constant pressure 

E – total  energy = ER + ER =[ pM / {ρM (γ M – 1)} ] [ 1 + 3 Rp(γ M – 1) ] 

EM – energy of mixture = pM / {ρM (γ M – 1)} 

ER – radiation energy = 3 pR  / ρM 

K - [ 1 + 3 Rp(γ M – 1) ] /  (γ M – 1) 

R – gas constant 

RM – effective gas constant = (1- Ф) R Γ- (1+K) / K 
 

 

1. Introduction 
 

Blast - wave theory was originally developed by Taylor
1 

& Sedov
2
 to 

study the effect of atom -bombs during the second world – war period. The 

method they employed is known as similarity method which is in good 

agreement with experimental results. Blast-waves are essentially, un-steady 

flow fields generated by explosions. When a small amount of energy is 

suddenly released in a relatively small - region, a disturbance headed by a 

strong shock - wave known as “blast-wave” is produced into surrounding 

medium. Blast - wave theory is attracting many investigators working in 

various fields such as theory of explosion,   exploding wire phenomena, 

under water explosion, astrophysics (explosion in stars), atmosphere of 

earth, volcano, tsunami, medical sciences and sonoluminescene. A 

considerable number of publications, like those of Neumann
3
, Latter

4
, 

Taylor
5
, Sedov

6
, Sakurai

7,8
, Krobeenikov

9
 etc., on blast - wave propagation, 

have appeared in literature. Analytical solutions of blast - wave propagation 

in homogeneous and non- homogeneous medium have been obtained by 

Rogers
10,11

, Laumbach and Probstien
12

, Sachdev
13

, Vishwakarma et.al
 14. 

Theory of blast - waves and related flows are of considerable physical 

interest in the theory of sonic booms, high altitude nuclear detonation, 

supernova explosions and sudden expansion corona into interplanetary 

space.    

Effects of radiation are of great significance in astrophysical problems 

and nuclear explosions. On the flow field of a gas, radiation effect can be 

expressed in terms of radiation - pressure, radiation energy density and 

radiation flux. In extremely high speed of flight of a spacecraft re-entering 
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planetary atmosphere, radiation becomes an important mode of heat transfer 

and plays an important role not only in stellar- atmospheres but also in 

stellar - interiors. If medium is extremely rarified but extended, the energy 

and pressure of the radiation become comparable with those of matter and 

thus influences the thermodynamic properties of the medium. 

By two-phase flows we mean a special flow problem in which we 

consider the mechanism of two phases of matter simultaneously. In general 

two-phase flows may be divided in two groups. The first group consists of 

flow problems of mixture of two-phases of four state–solids (pseudo – 

fluid), liquid, gas and plasma, where two-phases may be mixed 

homogeneously or in-homogeneously. In second group of flow problems, 

interaction between the two-phases of matter through their interface is 

important. In present article we consider first group of two-phase flows 

neglecting particle interaction, which has its importance in internal ballistic, 

lunar ash flow, exploding wire phenomena, under water explosion, 

astrophysics (explosion in stars), atmosphere of earth etc. 

There are many engineering problems in which dilute phase of gas 

particle is a good approximation of actual conditions. In such cases due to 

the existence of solid particles in the gas, properties of mixture differ 

significantly from those of gas alone. Such types of studies have numerous 

application in underground explosions
15,16,17

. In present analysis, we 

consider the mixture of two fluids – one is radiating-gas (including radiation 

energy and pressure but excluding radiation flux) and the other is pseudo – 

fluid of solid particles (which are spheres of identical mass, radius, and 

specific heat), the mixture developed by Rudinger
18

 for negligible particle 

pressure and particle volume–fraction (the case of moderate particle 

loading). Equation of state in this case is given as 
 

(1.1)                                       PM  =  RM T ρM.                                                                                                

     

2. Basic equations 
 

Basic equations governing flow field of spherical and cylindrical 

symmetry of two- phase flows when radiation - pressure and radiation - 

energy are included but radiation flux is neglected are given by Rudinger
18 

and Kruger et.al.
19

. 
 

(2.1)                         ρM (∂ u/ ∂t + u  ∂ u/ ∂r ) +  ∂ p/ ∂r = 0 ,  
 

(2.2)                         ∂ ρ M / ∂t  + u  ∂ ρ M / ∂r  + ρ M∂ u/ ∂r + nu ρ M / r  = 0, 
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(2.3)             (∂E/ ∂t + u  ∂ E/ ∂r ) + p [∂(1/ ρM ) / ∂t + u  ∂(1/ ρM)  / ∂r]  =  0 , 
 

 r being distance from point of explosion . Equation (2.3) can be written as 
 

(2.4)                          ∂p / ∂t + u  ∂ p/ ∂r  + pΓ (∂ u/ ∂r + nu / r) = 0,               

                               

n being equal to1 and 2 according as wave is cylindrical or spherical. In case 

Rp=0, above equations correspond to particle mixture case and if γM =γ,     

Rp ≠ 0,  we have radiating gas. 

If motion is assumed to be confined within the shock – front 
 

                                r = S (t), 
 

the velocity of shock – wave moving outwards is given by 
 

                                V = dS /dt. 
 

If density in undisturbed state is given by,  
 

(2.5)          ρ M 1( r ) = β r 
–α

, 
 

α , β being positive constants,  mass within the shock front is given by   

                                       S  

(2.6)                      m = ∫ 4 л r
2
 ρ M 1 dr = 4 л β S

( 3- α )
 ,                                                       

                                       0                       

which is positive only when 0 < α < 3.              

   

3. Similarity Transformations 
 

Applying similarity transformations Rogers
10

 

   

                             u = r t 
-1

U(η) , 

  

(3.1)                     ρM =  r
b  

Ω (η), 

 

                             P = r
b+2  

 t
-2   

P(η)  ,     

where η = r
-λ 

t.     
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Equations of flows can be reduced into ordinary - differential equations and 

parameters b and λ can be fixed according to the physical requirements of 

the problems. If shock – surface be determined by       

                             η = η 1 , where  η 1  is constant  , then  
                  

                 η 1 =  S
- λ 

 t  and    V =   dS /dt  = (S / λ t ), S being shock-radius.     

Total energy within the shock-front   
 

                            E = 
0

R
 4πr

2
{ (½)ρM u

2
 + pK}dr    

 

reduces  to                                   

(3.2)    E = (4π / λ)            
1

5 b / b 5 2 /21/ 2 U P  K t d
   

    


       
   .                                   

At this stage, we assume that the explosion is instantaneous, so that the total 

energy depends on only η. Hence from equation (3.2), we have 

 

(3.3)                       b + 5 = 2 λ. 
 

   

Thus boundary conditions become 

 

(3.4)                     U(η1 )  = {2/λ(Γ+1)}, 

 

(3.5)               Ώ ( η 1)   =   ρM0(S)S
-α

 (Γ+1)/( Γ-1) , 

 

(3.6)                       P(η1)  = 2ρ0(S)S
-α 

/{λ
2
( Γ+1)}. 

 

 

Since η1 is constant, left as well as right hand side of equations (3.4) to (3.6) 

are constant which is ensured  if    
 

(3.7)               ρ M 1 (S) S
-b

 = β1 (constant ),                                                                               
 

Comparing equations (2.5) and (3.7), we are in a position to fix b and λ, 

such that 
 

(3.8)                                b= -α,   β1 = β, 
 

(3.9)                                5 - α = 2λ .                                                                                                  
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4. Another Form of Similarity Solution  
 

Now introducing new independent variable 

 (4.1)                    x = (η1 / η) 
{2 / (5 -α )}

, 
 

Velocity of the shock front becomes 

 (4.2)                    V = {2 / (5 -α)} S / t, 

 (4.3)                   V 
2
 = S 

(α – 3)
 { 2 / η1 (5  -α ) }

2
. 

Thus, we have 
 

(4.4)                      u = V f(x), 

(4.5)                  ρ M  =  ρ M 1 (S) h(x), 

(4.6)                      p =    ρ M 1 (S) V 
2 
g(x)

 
/ Γ. 

Introducing above transformations in equations (2.2), (2.2) and (2.4),          

we have 
 

(4.7)                     {x- f(x) }f ′(x) = [g′(x) /{ Γ  h(x) }]+ f(x){ (α -3) / 2}, 
 

(4.8)                     {x- f(x) } {h ′ (x) /h (x) } = f ′(x) + {f(x) / x}n, 
 

(4.9)                     {x- f(x) } {g′(x) / g(x) } = Γ {f ′(x) +f (x)n / x} + α  – 3,                                              
  
with following boundary conditions 
 

(4.10)                     f(1) =2/ (Γ +1), 
 
 

(4.11)                     g(1) =2 Γ /(Γ +1), 
 

(4.12)                     h(1) =(Γ +1) /(Γ -1).                                                                   
 

 

 

 

5. Results and Conclusion 
 

Using central difference and Runge Kutta method variation of   

pressure for cylindrical and spherical waves is calculated and results are 

compared for different cases. Fig. 1 to 5 show variation of pressure for 

cylindrical waves. Fig. 1 shows ideal gas as well as radiation gas case for 

various radiation pressures no 0.5 & 1.00.  
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Figure 1: Variation of pressure for cylindrical wave
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Figure 2: Variation of pressure for cylindrical wave
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Fig.2 shows radiating gas case and is concluded that, pressure for Rp = 

1.5 & 2.5 in case of finite difference method and for Rp= 2.00 by Runge 

Kutta method is same at x =1.  



Kanti Pandey and Kiran Singh 

 
224 

 

 

0.90 0.92 0.94 0.96 0.98 1.00

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

Rp=0

Rp=0.5

Rp=0

Rp=0.5

FIGURE 3: Variation of pressure for cylindrical waves where particle mass fraction=0.2
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FIGURE 4: Variation of pressure for cylindrical wave where,particle mass fraction =0.4
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FIGURE 5: Variation of pressure for cylindrical wave where,particle mass fraction=0.6
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Fig.3 to Fig. 5 show the variation of pressure for particle mass fraction 

0.2, 0.4, 0.6 and Rp=0& 0.5. Similarly Fig.6 to 10 show variation of 

pressure for spherical wave for ideal, radiation and radiating gas particle 

mixture.   
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