On New Countability and Separationaxioms in Fuzzy Topological Spaces

S. C. Desai

Department of Mathematics, B.L.D.E.A.'s Dr.P.G.H. College of Engineering and Technology, Vijayapur, Karnataka, India Email: math.scdesai@bldeacet.ac.in

P. G. Patil

Department of Mathematics Karnatak University, Dharwad, Karnataka, India Email: pgpatil@kud.ac.in

(Received July 25, 2021)

Abstract: In this paper, the concepts of α -countability (first and second) and α -separability for fuzzy topological spaces are introduced and studied. The invariance of first α -countability and α -separability under F-continuous surjections are some of the results proved.

Keywords: α -countability and α -separability, fts.

2010 Mathematics Subject Classification: 03E72.

1. Introduction

C. K. Wong¹ introduced the concept of the first hypothesis of countability and separability for fuzzy topological spaces and proved some properties. The definitions of these spaces involve the concept of a 'fuzzy point'-the fuzzification of the singleton set in the ordinary set theory-which is not a proper generalization of the concept of the singleton set. More specifically, the definition of 'fuzzy point' does not reduce to that of a point in ordinary set theory, even if all the fuzzy sets are restricted to take the value 0 and 1 only. S. S. Benchalli³ introduced the alternative definitions of countability and separability for fuzzy topological spaces and proved some of their properties.

In this paper, the concept of α -countability and α -separability for fuzzy topological spaces are introduced and studied. The invariance of first α -

countability and α -separability under F-continuous surjections are among the results proved.

2. Main Results

Definition 2.1.¹ Let (X, τ) be a fts and p be a fuzzy point. A subfamily B_p of T is called a local base of p if $p \in B$ for every member B of B_p and for every member A of T such that $p \in A$ there exists a member B of B_p such that $p \in B \subset A$.

Definition 2.2.² Anfts (X, τ) is said to be C_1 if every fuzzy point in X has a countable local base.

Definition 2.3.¹ Anfts (X, τ) is said to be separable if there exists a sequence of fuzzy points $\{p_i\}, i = 1, 2, 3, ...$ such that for every member A of T and $A \neq 0$ there exists a p_i such that $p_i \in A$.

Definition 2.4.³ Let (X, τ) be a fts and $x \in X$. A subfamily B_x of T is called a local base at x if and only if B(x) > 0 for each $B \in B_x$ and every $A \in T$ with A(x) > 0 there exits a member $B_0 \in B_x$ such that $B_0 < A$.

Definition 2.5.³ Anfts (X, τ) is said to be C_1 if and only if every $x \in X$ has a countable local base.

Definition 2.6.³ Anfts (X, τ) is said to be separable if and only if there exists a sequence of points $\{x_i\}$, i = 1, 2, 3, ... such that for every member A of T and $A \neq 0$ there exits a x_i such that $A(x_i) > 0$.

Definition 2.7. Let $\alpha \in [0,1]$. Let (X,τ) be fts and $x \in X$. A subfamily B_x of T is called a α -local base at x iff for each $B \in B_x$ with $B_x > 0$ and every $A \in T$ with $A(x) > \alpha$, there exists a member $B_0 \in B_x$ such that $B_0 \leq A$.

Definition 2.8. Let $\alpha \in [0,1]$. Anfts (X,τ) is said to be α - C_1 if and only if every $x \in X$ has a countable α -local base.

Definition 2.9. Let $\alpha \in [0,1]$. Anfts (X, τ) is said to be α -separable if and only if there exists a countable sequence of points $\{x_i\}$, i = 1,2,3, ... such that for every member A of T and $A \neq 0$ there exists a x_i such that $A(x_i) > \alpha$.

Theorem 2.1. Every α -local base family in anfts (X, τ) is a local base.

Proof: Let (X, τ) be fts for each $x \in X$, B_x be a α -local base at x in T. Since B_x is a α -local base at x, for each $B \in B_x$ with $B(x) > \alpha \ge 0$ and for each $A \in T$ with $A(x) > \alpha \ge 0$ there exists a member $B_0 \in B_x$ such that $B_0 \le A$.

Thus, for each $x \in X$ and each $B \in B_x$ with B(x) > 0 and for each $A \in T$ with A(x) > 0, there exists $B_0 \in B_x$ such that $B_0 \leq A$. Hence B_x is a local base at x in fts T.

Theorem 2.2. Every α - C_1 fts is a C_1 fts.

Proof: Follows from the two concepts.

Theorem 2.3. *Every* α *-separable fts is a separable fts.*

Proof: Follows from the two concepts.

Theorem 2.4. If (X, τ) is C_1 fts then for each $x \in X$ there exists a countable α -local base of x, say $\vartheta = \{A_i\}, i=1,2, \ldots$ such that $A_1 \ge A_2 \ge A_3 \ge \ldots$.

Proof: Let (X, τ) be α - C_1 fts. Then for each $x \in X$ there exists a countable α -local base, say, = $\{B_i\}$, $i = 1, 2, 3, \ldots$ of x. Now we define, $A_1 = B_1$, $A_2 = B_1 \wedge B_2$, $A_3 = B_1 \wedge B_2 \wedge B_3$, $A_n = \bigwedge_{i=1}^n B_i$. Clearly $A_1 \ge A_2 \ge A_3 \ge \ldots$

Let $\vartheta = \{A_i\}$, i=1,2,3,... Then ϑ is a α -local base at x. Since B is a α -local base at x, for each $B_i \in B$, $B_i(x) > \alpha$. Therefore $A_i(x) > \alpha$ for each i. Let $G \in T$ with $G(x) > \alpha$. Since B is a α -local base at x, there exists a $B_i \in B$ such that $B_i \leq G$ and $B_i(x) > \alpha$ for each $i=1,2,3,..,i_0$. Therefore $\bigwedge_{i=1}^n B_i > \alpha$. That is $A_{i0}(x) > \alpha$ and $A_{i0} \leq B_{i0}$. But $B_{i0} \leq G$. Therefore $A_{i0} \leq G$. Thus, at $x \in X$ and $G(x) > \alpha$ of T, there exists $A_{i0} \in \vartheta$ such that $A_{i0} \leq G$ and $A_{i0} > \alpha$.

Hence ϑ is countable α -local base at *x*.

Definition 2.10.^{4,5} Let (X, τ) and (Y, S) be two fts's and let $f: (X, \tau) \rightarrow (Y, S)$ be a function. Then f is said to be continuous (Fuzzy continuous) if $f^{-1}(B) \in \tau$ for each $B \in S$.

Definition 2.11. A function $f: X \to Y$ is said to be F-open (respectively F-closed) if and only if for each open (respectively closed) fuzzy set A in X, F(A) is open (respectively closed) fuzzy set in Y.

Theorem 2.5. Let $f: X \to Y$ be an *F*-continuous *F*-open surjection. If (X, τ) is α - C_1 fts, then (Y, S) is also α - C_1 .

Proof: Let $y \in Y$, then $x \in X$ exists such that f(x) = y. Since (X, τ) is a α - C_1 fts, so x has a countable α -local base for τ , say B. Then the family $\vartheta_y = \{f(A): A \in B_x\}$ forms a countable α -local base of y in S; for each $A \in B_x$, $f(A) \in S$. Therefore ϑ_y is a subfamily of S and countable. Let $f(A) \in \vartheta_y$, then $(f(A))(y) = \bigvee_{z \in f^{-1}(y)} A(z) > \alpha$. Further, let $G \in S$ with $G(y) > \alpha$. Then $f^{-1}(G) \in \tau$ and $(f^{-1}(G))(x) = G(f(x)) = G(y) > \alpha$. Therefore $f^{-1}(G) \in \tau$ and $(f^{-1}(G))(x) > \alpha$. Since B_x is a α -local base at x, there exists $A_0 \in B_x$ such that $A_0 \leq f^{-1}(G)$ and $A_0 > \alpha$. Therefore $f(A_0) \leq f(f^{-1}(G)) = G$ and $(f(A_0))(y) = V_{z \in f^{-1}(y)}A(z) > \alpha$. Therefore $f(A_0) > \alpha$. Thus $G \in S$ with $G(y) > \alpha$, there exists $f(A_0)$ in ϑ_y such that $f(A_0) \leq G$ and $(f(A_0))(y) > \alpha$. Therefore ϑ_y is a countable α -local base at y in S. Hence (Y, S) is a α - C_1 .

Theorem 2.6. Let $f: X \to Y$ be an F continuous surjection. If (X, τ) is a α -separable fts, then (Y, S) is also α -separable fts.

Proof: Let (X, τ) be a α -separable fts. Then there exists a sequence of points $\{x_i\}$, i=1,2,3,.. in X such that for every member A of τ with $A \neq 0$ there exists an x_i such that $A(x_i) > \alpha$. Consider $\{f(x_i): i = 1,2,3,...\}$ is a sequence of points in Y. Let $B \in S$ and $B \neq 0$. Then $f^{-1}(B) \in \tau$ and $f^{-1}(B) \neq 0$, for $B \neq 0$ implies that there exists a $y \in Y$ such that B(y) > 0. Since f is on to, there exists an x in X such that f(x) = y and $(f^{-1}(B))(x) = B(f(x)) = B(y) > 0$. Therefore $f^{-1}(B) \neq 0$. Since (X, τ) is α -separable, there exists x_i such that $(f^{-1}(B))(x_i) > \alpha$, implies that $B(f(x_i)) > \alpha$. Thus for $B \in S$ and $B \neq 0$, there exists a point $f(x_i)$ in $\{f(x_i): i = 1,2,3,...\}$ such that $B(f(x_i)) > \alpha$. Hence (Y, S) is α -separable.

Definition 2.12.¹ Let τ be a topology. A subfamily B of τ is a base for τ if and only if each member of τ can be expressed as the union of some members of B.

Definition 2.13. Let $\alpha \in [0,1)$ (respectively $\alpha^* \in (0,1]$). Let (X, τ) be a fts. A subfamily B defined by $B = \{B: B \in \tau, B > \alpha\}$ ($B^* = \{B: B \in \tau, B \ge \alpha\}$ of τ is said to be α -base (respectively α^* -base) if every member A of τ and $A \neq 0$ is expressed as the union of members of B (respectively B^*).

Definition 2.14. A fts (X, τ) is said to be α - C_{11} (respectively α^* - C_{11}) if there exists a countable α -base (respectively α^* -base) for τ .

Theorem 2.7. Every α - C_{11} fts is α - C_1 .

Proof: Let X be α - C_{11} fts. Let $x \in X$. To prove that x has a countable α -localbase. Since X is α - C_{11} , by definition τ has a countable α -base, say $B = \{B: B \in \tau, B > \alpha\}$. Let $B_x \subset B$ be defined by $B_x = \{B: B \in \tau, B(x) > \alpha\}$. Clearly, B_x is countable. Let $A \in \tau$ with $A(x) > \alpha$. Now since $A \in \tau$ and B is a α -base for τ , A can be expressed as a union of some members of B. Therefore, $A = V_{B_i \in B} B_i$, but $A(x) > \alpha$. Therefore $V_{B_i \in B} B_i(x) > \alpha$ implies that there exists $B_{i0} \in B$, such that $B_{i0} > \alpha$. Therefore $B_{i0} \in B_x$ and $B_{i0} \leq B_x$.

A.Thus for each $x \in X$ with $A(x) > \alpha$, there exists a B_{i0} in B_x with $B_{i0} > \alpha$ such that $B_i < A$. Therefore, B_x is a α -local base for τ and therefore, every $x \in X$ has a countable α -local base. Hence (X, τ) is α - C_1 .

Definition 2.15.⁵ Let (X, τ) be a fts and let A be a subset of X. Then the family $\tau_A = \{G_A: G \in \tau\}$ is a fuzzy topology on A, where G_A is the restriction of G to A. The fuzzy topology τ_A is called the relative fuzzy topology on A induced by the fuzzy topology τ on X. Also (A, τ_A) is called the fuzzy subspace of (X, τ) .

Theorem 2.8. Every open crisp subspace of a α -separable fts is α -separable.

Proof: Let X be a α -separable space and Y be an open crisp subspace of X. Since X is α -separable, there exists a countable sequence of points say $S = \{x_i : i = 1, 2, 3, ...\}$ such that for each $A \in \tau$ with $A \neq 0$ there exists x_i , such that $(A(x_i) > \alpha$.Now, let $S_1 = \{x_n \in S : n \in N \text{ and } x_n \in Y\}$ which is a countable sequence of points in Y.

Let *U* be any open fuzzy set in *Y*. Since *Y* is open, *U* is also open in *X*. As *X* is α -separable, there exists $x_{i0} \in S$ such that $U(x_{i0}) > \alpha$. But $\leq Y$, that is $Y \geq U(x_{i0}) > \alpha$ implies that $Y(x_{i0}) > \alpha$ which implies that $Y(x_{i0}) = 1$. Therefore $x_{i0} \in Y$. Therefore $x_{i0} \in S_1 = \{x_n \in S : n \in N \text{ and } x_n \in Y\}$. Thus for each open fuzzy set *U* in *Y*, there exists a point x_{i0} in S_1 which is the countable sequence of points in *Y* such that $U(x_{i0}) > \alpha$. Hence *Y* is α -separable. Therefore open crisp subspace of α -separable fts is α -separable.

Theorem 2.9. Every crisp subspace of α - C_{11} fts is α - C_{11} .

Proof: Let X be a α - C_{11} fts, and Y be a crisp subspace of X. Since X is α - C_{11} , there exists a countable α -base for τ , say $B = \{B_i : i \in I; B_i > \alpha\}$. Then $B_Y = \{B_i \land Y : i \in I\}$ is a countable α -base for crisp space Y. If U is an open fuzzy set in Y with $U \neq 0$ then $U = Y \land G$, where $G \in \tau$. Now, $G \in \tau$ and B is a α -base for τ , implies that $G = \lor B_{in}, B_{in} \in B$. Therefore $U = (\lor B_{in}) \land Y$ for $B_{in} \in B$, that is $U = \lor (B_{in} \land Y)$ for some $B_{in} \in B$ and $(B_{in} \land Y) \in B_Y$ for each n. Clearly, $B_{in} \land Y > \alpha$ for each i. Thus, for each open fuzzy set U with $U \neq 0$ in Y can be expressed as aunion of members of B_Y . Hence B_Y is α -base for Y. Therefore, Y is a α - C_{11} fts. Hence every crisp subspace of α - C_{11} fts is α - C_{11} .

Acknowledgement: The second author is grateful to the University Grants Commission, New Delhi, India, for its financial support under UGC-SAP-III DRS to the Department of Mathematics, Karnatak University, Dharwad-580003, India.

References

- 1. C. K. Wong, Fuzzy Points and Local Properties of Fuzzy Topology, *J. Math. Anal. Appl.*, **46** (1974), 316-328.
- 2. C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- 3. S. S. Benchalli, *Studies in Point Set Topology, Contribution to the Theory of Fuzzy Topological Spaces*, PhD. Thesis, Karnatak University, Dharwad (1984).
- 4. D. M. Ali and A. K. Srivastava, On Fuzzy Connectedness, *Fuzzy Sets and Systems* **28** (1998), 203-208.
- 5. R. H. Warren, Neighborhood Basis and Continuity in Fuzzy Topological Spaces, *Rocky Mount. J. Math.*, **8**(3) (1978), 459-470.