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Abstract: Mutualism arises in many qualitatively different ways. We present a 

model of mutualism in which interactions among four species lead to mutualism 

with prey .Our model involves interactions among a prey, a prey mutualist and 

two predators competing for the same prey. Giving ecologically reasonable 

constraints upon the functions existing in the model, we describe (a) the 

conditions for bounded ness of solutions, (b) the equilibria and their local 

stability, and (c) conditions for global stability of the interior equilibrium. 
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1. Introduction 
 

An interaction among organisms of different species is called mutualistic if the 

presence of each species increases growth rate of the other. Much of classic ecological 

theory (e.g. natural selection, niche separation, meta population dynamics) has focused on 

negative interactions, such as predation and competition, but now positive interactions 

(mutualism) are increasingly receiving focus in ecological research
1-3

.Cleaner fish, 

pollination, seed dispersal, gut flora and nitrogen fixation are some examples of it. The 

occurrence of mutualism can arise in a great variety of ways in nature
4,5

. Many of these 

occurrences are because of interaction with a third population in competitive or predator-

prey situations. Although most of such mutualisms involving predator-prey systems usually 

occur with predators and mathematical models have been developed and analysed
6-8

. 

In the above mentioned papers, the population mutualists to predator are able to 

survive in the absence of mutualists i.e., the mutualism is obligate on, at most, one of the 

two populations, since isolated communities are rare in nature and most of the time there is 

migration from one community to other. Also there are instances where mutualism occurs 

with prey. Original models of mutualism were two dimensional (Dean
9
, Freedman

10
, 

Freedman et. al.
11

).Three dimensional mutualistic models, where the mutualism arises due 

to presence of a third population were first analysed in Rai, et al.
12

. Since then a fair amount 

of work has been done on three dimensional mutualistic models, where mutualism occur 

with prey
7,13,14

. Such models are further extended by Kumar and Freedman
8
, especially in 

case of food chains. 
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One of the difficulties of understanding mutualism is the diversity of qualitatively 

different types of ecological systems. In addition to degree of obligateness of the 

interactions, two factors contribute to this diversity: 

     1. The mechanisms by which one species benefits another. 

     2. Number of species that must interact in order for there to be mutualism between 

two species. 

The ways in which one species may benefit another are as varied as the types of 

ecological problems that organism encounter. Examination of those factors thought to be 

limiting to organism shows that most of these can be modified by one organism to the 

benefit of other. For example, shelter, organic nutrients, dispersal movement of gametes, 

competition, and predation are known to be involved in the existence of mutualistic 

benefits
4
. Since the two mutualist species usually benefit each other in different ways, there 

are a large number of qualitatively different kinds of mutualistic systems. 

Not only mutualism does involve many different mechanisms but the number of 

species necessary for the interaction to occur may also vary. Mutualistic benefits based 

upon modification of a biotic environment or the direct transfer of nutrients from one 

organism to another requires the interaction of just two species. Mutualistic benefits arise 

from modification of predator-prey or competitive interactions among at least three species. 

In some cases, benefits may arise indirectly by the interaction of four or more species
15

. 

In any mutualistic system there may be more species involved in the interaction 

because a mutualist could simultaneously benefit its partners in more than one ways
16

. A 

mutualist of prey may decrease the predation of its predators, or compete with its predators. 

A mutualist of a predator may increase predation on the prey or stimulate the prey to more 

rapid growth. A mutualist of a species may help it to out compete its predators by adding it 

directly, competing with competitors or predating on its predators.In view of these, 

multispecies models are important to be analysed. 

Given the complexity and diversity of mutualistic systems, it is not clear that a unified 

approach to the modelling of mutualism will lead to appropriate results. In the beginning, 

mutualism has been modelled as a two species phenomenon with no explicit consideration 

of how benefits arise. Occasionally two species models have been extended to n-species 

cases but with no additional complexity of the underlying models. Therefore major reasons 

for considering multispecies complex models are: 

1. The results of two species models may not be representative of the qualitative 

behaviour of more complex systems. 

2. Even, if complex systems can be approximated by two-species models, these models 

will have to be modified to include density dependent mutualism coefficients. 

3. Analysis of complex models may suggest appropriate forms for functions appearing 

in the models. 

4. Finally, more complex models may suggest new approaches for field ecologists to 

look at systems. 

Here, in this paper, we consider the cases in which a mutualist modifies predation or 

competition to the benefit of prey. Out of many many ways that a mutualist may affect 

predator-prey interactions, we consider just one of these, namely a mutualist deterring 

predation on prey. This is probably the most obvious and common type of mutualistic 

benefit. A mutualist can benefit prey in the following manners: 

• by decreasing predators functional response, 
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• by increasing death rates of predators, 

• by decreasing the rate of conversion from prey biomass to predator biomass, 

• a mutualist can also benefit prey population indirectly by its effect on 

dynamics of predator i.e. by effecting its death rates.  
 

For example, ants deter herbivorous from feeding on plants
16

, and deter predators from 

feeding on aphids
17,18

, enzootic algae deter predators from feeding on protozoa’s and 

crustacean deter star fish from feeding on corals
19

. 

 

2. The Model 
 

Here we have modeled an ecological situation arising due to interactions of four 

species; two competing predators y and z, one prey x and a mutualist u to the prey species 

living in the same environment. Mathematically this model can be represented by the 

following system of autonomous differential equations: 
 

(2.1)    

1 2

1 1 1 1

2 2 2 2

( , , , )

( , ) ( , ) ( , )

[ ( ) ( ) ( , )]

[ ( ) ( ) ( , )]

(0) 0, (0) 0, (0) 0, (0) 0

u uh u x y z

x xg u x yp u x zp u x

y y s y q z c p u x

z z s z q y c p u x

u x y z

=

= − −

= − − +

= − − +

> > > >

ɺ

ɺ

ɺ

ɺ

α

 

 
d

.   and t represents time.
dt

=  

 u = population of mutualist at any time t 

 x = population of prey at any time t 

 y = population of predators at any time t 

 z = population of predators at any time t 

, 0, 1,2 0are parameters≥ ≥ = ≥
i i

s o c i α
 

Functions h, g ,p ,q are from ,R R R+ +× → are continuous and sufficiently smooth to 

ensure the existence and uniqueness of solutions of initial value problem (2.1) with initial 

conditions in R+  and to allow the stability analysis of any solutions of (2.1). We also 

require the solutions to be defined on some interval [0.T] where 0 ≤ ≤ ∞T .We further 

makes the following assumptions: 

H0: Since we are going to consider only the case of predator deterrence by the 

mutualist, therefore we must assume: 

                (a) 
( , , , )∂

∂

u x y z

y
= 0, 

                (b) 
( , , , )∂

∂

u x y z

z
= 0. 
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H1: The function h (u. x) represents the specific growth rate of mutualist in the absence 

of prey and satisfies the following assumptions: 
 

               

( ) (0, ) 0

( ) : such that ( ( ), ) 0

( , )
( ) 0

( , )
( ) 0

a h x

b L h L x x

h u x
c

u

h u x
d

x

+

>

∃ → =

∂
<

∂

∂
≥

∂

ℝ ℝ

 

Ecologically, the above assumptions impose the following restrictions on mutualist 

population: 

  1. The mutualist can grow at low densities with or without the prey (x).This indicates 

that mutualism is non-obligate for mutualists. 

  2. The population of mutualists can not grow over a certain population size, which 

depends on population size of its partner prey; this means that it has carrying capacity L, 

which is a function of prey population. 

  3. The population of mutualist is slowed by an increase in its own population, other 

populations remaining the same .This further implies that mutualist exhibits density 

dependent growth. Ecologically this is termed as” population effect”. 

  4. Population of mutualists is enhanced by an increase in the prey population for any 

population of the mutualist. 

 

 H2: The function g(x, u) represent the specific growth rate of prey population. We 

propose the following hypothesis for this function: 
 

 

( ) (0, ) 0,

( , )
( ) 0,

( ) : satisfying ( ( ), ) 0,

( , )
( ) 0.

a g u

g x u
b

x

c k g k u u

g x u
d

u

+

>

∂
<

∂

∃ → =

∂
≤

∂

ℝ ℝ

     

 Ecologically the above assumptions, imposes the following restrictions on specific 

growth rate of prey: 

1. The prey can grow at low densities with or without the presence of mutualists, so 

the mutualism is also non-obligate for prey. 

2. The population of prey is slowed by an increase in its own numbers, for a fixed 

population size of mutualist .In other words the prey exhibit density dependent 

growth pattern. 

3. The population of prey can not grow over a certain size in any environment, In 

other words the environment has carrying capacity for prey, which depends on 

population size of the mutualist. 
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4. There may be a cost to prey; associating with the mutualist, In other words the 

growth rate of prey is suppressed by an increase in the mutualist population. 

 

 H3: The function, ( , )
i

p x u  i=1, 2 represent the predator’s response function. We 

propose the following hypothesis on this function: 
 

 

( ) (0, ) 0

( , )
( ) 0

( , )
( ) 0

( ) ( , ) 0 1,2

=

∂
≥

∂

∂
≤

∂

≥ =

i

i

i

i

a p u

p x u
b

x

p x u
c

u

d p x u i

 

 

Ecologically, these hypotheses impose the following restrictions on the predators response 

function: 

1. The predator’s response to the prey density, which refers to change in the density 

of prey per unit of time per predator as the prey density changes, is assumed 

always to be non-negative. Also there can not be any predation in the absence of 

prey. 

2. For fixed population of other species, the predation is enhanced with the increase 

in the number of prey species. 

3. The mutualist cuts down the effectiveness of predation on the prey. This may be 

termed as “Mutualist effect” .This is the main effect incorporated in the model. 

 

 H4: The functions 
1
( )q y  and 

2
( )q z represent competition between predators y and z. 

We propose the following hypothesizes on these functions 
 

  1

2

( ) (0) 0; 1,2

( )
( ) 0

( )
( ) 0

i
a q i

q z
b

y

q y
c

z

= =

∂
>

∂

∂
>

∂

 

                    

Ecologically, these hypotheses impose the following restrictions on the functions 
i

q ,i=1, 2: 

1. In the absence of competing predators there is no competition. 

2. Competition increases with the increase in rival densities .Further if 

0; ,i

j

q
i j

q

∂
= ∀

∂
  then also there is no competition. 
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 H5:  The functions 
1 2
( ) and ( )s y s z are death rates of competing predators. We propose 

the following hypothesis on these functions: 
 

 1

2

( ) (0) 0

( )
( ) 0

( )
( ) 0

>

∂
>

∂

∂
>

∂

i
a s

s y
b

y

s z
c

z

 

Ecologically, these hypotheses impose the following restrictions on the death rates. 

1. Initially death rates are positive. 

2. Death remains positive for all the time. 

The death rates incorporated in the model is a combination of natural death and harvesting 

of predator by other predators. Obviously our model is valid if a predator is harvested by 

other predators or they die a natural death.  

 The above assumptions are ecologically reasonable and exemplified in nature as 

discussed in previous section. 

Theorem 2.1: Under assumed mathematical conditions on the functions h, g, p, s, q, 

the solutions {u (t), x (t), y (t), z (t)} of system (2.1) with initial positive conditions are all 

positive and bounded for 0t t≥ . 

  
1

1 2

Set {( ( ), ( ), ( ), ( )) : 0 ; 0 ; 0 ;

0 }

u t x t y t z t u L x K c x y M

c x c y z N

Ω = ≤ ≤ ≤ ≤ ≤ + ≤

≤ + + ≤

ɶ ɶ ɶ

ɶ

 

0

1

1

1

2 2 2 1 1

2

where  lim ( )

max( , (0))

[ (0)] max ( ,0)
(0)

1
[ (0) ( (0)) { (0) (0, )}]

(0)

x
L L x

K x K

c K
M g s with g g u

s

N c K g s M s c p K
s

→∞
=

=

= + =

= + + +

ɶ

ɶ

ɶ
ɶ

ɶ ɶ ɶ

α

α

 

is positively invariant set and attracts all solutions initiating with non-negative initial 

conditions. 

  

3. The Existence of equilibria 
 

  The equilibrium points of the system (2.1) are obtained by equating right hand side of 

each equation of (2.1) to zero and solving them algebraically.aic equations. 

Clearly 
1
(0,0,0,0)E is equilibrium. From hypothesis (H1-a) and (H2-c), it is clear that 

2
( (0),0,0,0)E L and 

3
(0, (0),0,0)E K  are also the equilibrium states. The subsystem in the 

+
ℝ

u
is given by  

( ,0) , (0) 0= >ɺu uh u u . 
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From hypothesises (H1-b) it follows that 2E is equilibrium. Furthermore, conditions (H1-a), 

(H1-b), (H1-c) imply that  

0
lim ( )
→∞

=
t

u t L , 

 establishing the uniqueness of 
2

E .Similar argument followed for 
3

E  in the light of 

assumptions (H2-a), (H2-b), (H2-c).Thus system (2.1) has exactly two axial equilibria 

namely 
2

E  and 
3

E .Subsystems in and
+ +

ℝ ℝ
y z

 has no equilibria, because all of their 

solutions tend to zero exponentially. 

4
ˆ ˆ(0, , ,0,0) :E x y  in xy

+
ℝ  

Theorem 3.1: An N-S condition for equilibrium of the form 
4

ˆ ˆ(0, , ,0,0)E x y to exist in 

+
ℝ xy is that following conditions must be satisfied: 

1. ˆ ˆsuch that  0 (0)∃ < <x x K   

2. 1

1

1

(0)
ˆ(0, )=

s
p x

c
 

Proof: The solutions of the subsystem 

(3.1)                       
1

1 1 1 1

(0, ) (0, )

[ ( ) (0) ( , )]

x xg x yp x

y y s y q c p o x

= −

= − − +

ɺ

ɺ

α
                                                     

in 
+
ℝ xy plane are bounded for positive time

16
, therefore 

     
1

ˆ( ,0)
ˆ

ˆ( ,0)
=

xg x
y

p x

α
 

In order to make ˆ 0>y , it is necessary to assume condition 1 above. 

5 ( , ,0,0) in +
ɶ ɶ ℝ uxE u x : In order to have a viable mutualistic system in the absence of 

predation we must have an equilibrium of the type 
5

E .In order to be an equilibrium for 

positive values of u and x, the algebraic curves h(u,x) = g(u,x) = 0 must intersect in the first 

quadrant of u-x plane. This is equivalent to having the curves  

 (3.2)                 u = L(x) 

                   x = K(u) 

Intersect for positive values. By (H1), the curve u = L(x) is monotonically increasing 

function with initial value at (L(0), 0, 0, 0). The curve x = K(u) initiating at (0, K(0), 0, 0) 

may increase or decrease. If 
( , )

0
∂

≤
∂

g u x

u
, then the curve is monotonically decreasing and 

the two curves will intersect uniquely at ( , ,0,0)ɶ ɶu x  unless the cost to the prey due to the 

mutualist is so high as to drive the prey extinct before u = L(0). We avoid this case from 

happening, since then u will become a predator for the prey x, in spite of being a mutualist. 

If 
( , )

0
∂

>
∂

g u x

u
 then by bounded ness of solutions lim ( )

→∞
= ɶ

x
K u K . In that cases there will be 



B. Rai and Madhusudan Singh 

 
158 

one or more points of inter sections .Thus in either case, under the assumptions under 

consideration, there will be equilibrium of the form 
5
( , ,0,0)ɶ ɶE u x  in +

ℝ ux . 

Similarly we can show the existence of equilibrium of the form 
6 2 2
(0, ,0, )E x z  in 

+
ℝ xz plane with the following N-S conditions to be satisfied: 

1. 0 :x∃ 0 < 0x < K (0) 

2. 2

2 0

2

(0)
(0, )=

s
p x

c
 

If the above two conditions are satisfied then there exist an equilibrium of the type 

6 2 2
(0, ,0, )E x z , where 2 2

2

2 2

( ,0)

( ,0)
=

x g x
z

p x

α
. 

     The three dimensional interior equilibrium points, if exist are obtained by solving 

corresponding algebraic equations, we denote them by 
7 3 3 3
( , , ,0)E u x y  in 

+
ℝ uxy  

8 4 4 4
( , ,0, )E u x z in +

ℝ uxz , 
9 5 5 5
( , , , )E o x y z  

+
ℝ xyz . 

Finally, we will write down conditions for existence of an interior equilibrium in the 

positive orthant (u > 0, x > 0, y > 0, z > 0). Any equilibrium of this type will be obtained by 

solving the following system of algebraic equations: 
 

1 2

1 1 1 1

2 2 2 2

(3.3 ) ( , ) 0,

(3.3 ) ( , ) ( , ) ( , ) 0,

(3.3 ) ( ) ( ) ( , )] 0,

(3.3 ) ( ) ( ) ( , )] 0 ,

(0) 0, (0) 0, (0) 0, (0) 0.

a h u x

b xg u x yp u x zp u x

c s y q z c p u x

d s z q y c p u x

u x y z

=

− − =

− − + =

− − + =

> > > >

α

 

 

From equation (3.3a), we have u = L(x) is a solution, so that in order to solve for x by the 

equations (3.3b) and (3.3d), we must assume: 

1

1

1

(3.4 ) range ( , ( )),
s

a p x L x
c

∈                                  

and                                                       

(3.4 )b    2

2

2

range ( , ( )).
s

p x L x
c

∈       

Under the above assumptions, the equations  

     
1 1 1 1

2 2 2 2

( ) ( ) ( , ) 0

( ) ( ) ( , ) 0

− − + =

− − + =

s y q z c p x u

s z q y c p x u
    

can have several solutions, giving rise to several interior equilibria. The y and z 

components of these equilibria are given by 
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2

1

( , ) ( , )
(3.5)

( , )

x g x u z p x u
y

p x u

∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗

−
=

α
   ,   

1

2

( , ) ( , )
(3.6)

( , )

x g x u y p x u
z

p x u

∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗

−
=

α
.  

In order to ensure positive y and z-components, it is necessary to assume  

(3.7) ( ( ))x K L x∗ ∗< .                                                   

In order to have a unique interior equilibrium, we also need to assume  

(3.7 )a    
1 1

2 2

( , ) ( ( )) 0

( , ) ( ( )) 0

x u

x u

p x u p L x

p x u p L x

′+ >

′+ >
                                                

 There fore under the assumptions discussed above system (2.1) posses a unique 

equilibrium
10

( , , , )∗ ∗ ∗ ∗E u x y z , where x
∗

is such that 

(3.7 )b

1

1

1

2

2

2

( , ( )) ,

( , ( )) ,

s
p x L x

c

s
p x L x

c

∗ ∗

∗ ∗

=

=

                                                          

Also ∗u is determined by  

(3.7c)                                                  ( ).∗ ∗=u L x               

        

4. Local Stability of Equilibria 
 

The local stability analysis can be made by computing the eigen values of the 

variational matrix at the equilibrium points.  The signs of the real parts of eigen values 

evaluated at given equilibrium points determine the stability
9
. The variational matrix for the 

system (2.1) is given by  

(4.1) ( , , , )M u x y z  
 

1
1 2

2 1 2

1 1 1 1
1 1 1 1 1

1

,
2 2 2 2 2

( , ) ( , ) ( , ) 0 0

( , ) ( , ) [ ( , ) ( , )]
( , ) ( , )

( , ) ( , ) ( , )

( ) ( ) ( , )
( , ) ( , ) ( )

' ( )

( , ) ( , ) ( )

u x

u u x

u x x

u x

u x

h u x uh u x uh u x

xg x u yp x u g x u xg x u
p x u p x u

zp x u yp x u zp x u

s y q z c p x u
yc p x u yc p x u yq z

ys y

zc p x u zc p x u zq y

+

− +
− −

− − −

= − − +
′−

−

−
−

α α

2 2

2 2 2

( ) ( )

( , ) ( )

s z q y

c p x u zs z

 
 
 
 
 
 
 
 

− 
 ′+ − 

 

Now we consider the various equilibrium states separately. 

1
(0,0,0,0)E : From (3.2), the variational matrix, evaluated at 1E could be written as 

1 4 4(0,0,0,0) ( )ijM m ×= , 
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where     11 12 13 14 21 22(0,0), 0, 0, (0,0)m h m m m m m g= = = = = = α , 

23 24 31 32 34 33 1 1 1 10, 0 , (0) (0) (0,0)m m m m m m s q c p= = = = = = − − + , 

41 42 43 44 2 2 2 2 20, (0) (0) (0,0) ( )m m m m s q c p zs z′= = = = − − + − . 
 

Eigen values are given by  

1 1 2 2
( , , , ) ( (0,0), (0,0), (0) (0), (0) (0))

u x y z
h g s q s q= = − − − −λ λ λ λ λ α . 

Since h(0,0)>0 and g(0,0)>0, by assumptions (H1) and (H2), the equilibrium 1E  is unstable. 

Near 
1

E , u and x populations grow while y and z populations decline, because eigen values 

are positive in u and x directions whereas those in y and z directions are negative. 

Consequently 1E  has a non-empty stable and unstable manifold. 

2
( (0),0,0,0)E L : From (3.2), the variational matrix evaluated at 

2
E could be written as 

2 4 4( (0),0,0,0) ( )ijM L m ×=  

where  11 12 13 14(0) ( (0),0,0,0), (0) ( (0),0,0, ), 0u xm L h L m L h L m m= = = = , 

21 23 24 22 31 32 34, 33 10, ( (0),0), 0 (0)m m m m g L m m m m s= = = = = = = = −α , 

41 42 43 44 20, (0)m m m m s= = = = − . 
 

Eigen values are given by 

 1 2( , , , ) [ (0) ( (0),0), ( (0),0), (0), (0)]u x y z uL h L g L s s= = − −λ λ λ λ λ α  

From signs of real parts of eigenvalues, we observe that these are positive in x-direction 

and negative in u, y and z-directions. Thus we may conclude that 2E  attract in u, y and z-

directions and repels in x-direction .Here also 2E  has stable and unstable manifolds. 

3 4 4(0 (0),0,0) ( )ijM K m ×= , 

where   11 12 13 14 21(0, (0), 0, (0) (0, (0))um h K m m m m K g K= = = = = α , 

22 23 1 24 2[ (0) (0, (0)], (0, (0)), (0, (0))xm K g K m p K m p K= = − = −α , 

32 32 34 33 1 1 1 10, (0) (0) (0, (0))m m m m s q c p K= = = = − − + , 

41 42 43 44 2 2 2 20, (0) (0) (0, (0))m m m m s q c p K= = = = − − + . 

 

3 (0, (0),0,0)E K : From (3.2), the variational matrix evaluated at 3E could be written as 

3 4 4(0 (0),0,0) ( )ijM K m ×= , 

where  11 12 13 14 21(0, (0), 0, (0) (0, (0))um h K m m m m K g K= = = = = α , 

  22 23 1 24 2[ (0) (0, (0)], (0, (0)), (0, (0))xm K g K m p K m p K= = − = −α , 

  32 32 34 33 1 1 1 10, (0) (0) (0, (0))m m m m s q c p K= = = = − − + , 

  41 42 43 44 2 2 2 20, (0) (0) (0, (0))m m m m s q c p K= = = = − − + . 
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Eigen values are given by  

    
1 1 1 2 2 2

( , , , ) [( (0, (0)), (0) (0, (0)),

(0) (0, (0)), (0) (0, (0))]

u x y z xh K K g K

s c p K s c p K

= =

− + − +

λ λ λ λ λ α
 

Eigen values are positive in u-direction, negative in x-direction. The eigen values in y and 

z-directions are given by 

                                
1 1 1

2 2 2

(0) (0, (0))

(0) ( , (0))

y

z

s c p K

s c p o K

= − +

= − +

λ

λ
 

which are both positive .Thus 3E  is unstable in y and z-directions also. Here we have 

assumed that  

                                      
(0)

(0, (0)) ; 1, 2
(0)

i
i

i

s
p K i

c
> =  

This assumption is ecologically reasonable, because in the absence of mutualist and when 

the prey population is near its carrying capacity K (0), the predators y and z must multiply. 

4 1 1(0, , ,0)E x y  From (3.2), the variational matrix evaluated at 4E could be written as: 

 4 4 4(0, (0),0,0) ( )ijM K m ×=  

where  

    

11 1 12 13 14 21 1 1 1 1 1

22 1 1 1 1 1 1 23 1 1 24 2 1

31 1 1 1 1 1 1 32 1 1 1 1 33 1 1 1 1 1 1

1 1

(0, ), 0, (0, ) (0, ),

(0, ) ( , ) (0, ), (0, ), (0, )

[ ( ) (0, )], (0, ), ( ) (0) (0, )

(

u u

x x

u x

m h x m m m m x g x y p x

m x g x g o x y p x m p x m p x

m y s y c p x m y c p x m s y q c p x

y s y

= = = = = −

= + − = − = −

= − + = = − − + +

′

α

α α

1 34 1 1 41 42 43 44 2 2 1 2 2 1), (0), 0, (0) ( ) (0, )m y q m m m m s q y c p x′= − = = = = − − +

                   

 

The eigen value of 4M  in u-direction is 1(0, )h x , which is positive by (H1-a). Thus the 

equilibrium 4E  is unstable, population of u near 4E  increases. The eigen value in z-

direction is given by 

2 2 1 2 2 1(4.2) (0) ( ) (0, )z s q y c p x= − − +λ                                   

The other two eigen values namely in x and y-directions are the roots of the equation 

2
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

(4.3) [ (0, ) (0, ) (0, ) ( )]

(0, )[ (0, ) (0, ) (0, )

(0, ) (0, )] 0

x x

x x x

x

x g x g x y p x y s y

y p x x g x g x y p x

c y p x p x

′− + − − −

+ − +

=

λ α α λ

α α                

From Rough-Hrwitz criteria the roots of equation (4.2) have negative real parts iff 

1 1 1 1 1 1 1 1 1(4.4 ) (0, ) (0, ) (0, ) ( ) 0x xa x g x g x y p x y s y′+ − − <α α ,                                    

and                                                                                                                                                               

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

(4.4 ) (0, )[ (0, ) (0, ) (0, )

(0, ) (0, )] 0

x x x

x

b y p x x g x g x y p x

c y p x p x

+ −

+ <

α α
                                     



B. Rai and Madhusudan Singh 

 
162 

4E  is an interior equilibrium for a competitive predator-prey system, In the absence of 

mutualist. Freedman
17

 has given the graphical analysis of this case and accordingly, we can 

state the following result for our system. Let us denote 

4 ( )H x∗ = 1 1 1 1 1 1 1 1 1(0, ) (0, ) (0, ) ( )x xx g x g x y p x y s y′+ − −α α  and 

4 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

( ) (0, )[ (0, ) (0, ) (0, )

(0, ) (0, )]

x x x

x

H x y p x x g x g x y p x

c y p x p x

∗∗ = + − +α α
 

Also if 4 ( )H x∗∗ >0, then we have the following theorem: 

Theorem 4.1: If 4 ( )H x∗ <0, then 4E  is asymptotically stable and unstable if 

4 ( )H x∗ >0.                        


5 ( , ,0,0)E u xɶ ɶ : From (3.2), the variational matrix evaluated at 5E could be written as  

5 4 4( , ,0,0) ( )ijM u x m ×=ɶ ɶ  ,   

where  

11 12 13 14 21

22 23 1 24 2 31 32 34

33 1 1 1 1 41 42 43 44 2 2 2 2

( , ), ( ), ), 0, ( , ),

( , ), ( , ), ( , ), 0 0,

(0) (0) ( , ), 0, (0) (0) ( , )

x u

x

m uh u x m uh u x m m m xg u x

m u xg x m p u x m p u x m m m

m s q c p u x m m m m s q c p u x

= = = = =

= = − = − = = = =

= − − + = = = = − − +

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

α

α  

The eigen values of 5M in y and z-directions are given by  

1 1 1

2 2 2

(4.5 ) (0) ( , )

(0) ( , )

y

z

a s c p u x

s c p u x

= − +

= − +

ɶ ɶ

ɶ ɶ

λ

λ
                           

And other two eigen values in u and x-directions are given by  

2

1

2

1 1
(4.5 ) [ ( , ) ( , ) [( ( , ) ( , ))

2 2

4 ( , ) ( , ) ( , ) ( , )] ].

u x u x

u x u x

b uh u x x g u x uh u x x g u x

uxh u x g u x g u x h u x

λ α α

α

± = + ± +

− −

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

                            

Thus if we denote 5 ( )H x∗ = ( , ) ( , ) ( , ) ( , )u x u xh u x g u x g u x h u x−ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ , then we have the following 

result: 

Theorem 4.2: If 5 ( )H x∗ >0, then the eigen values ±λ have negative real parts and                  

5E  is asymptotically stable in positive u-x plane. Also if ( )H x∗ <0, then 5E has non-empty 

stable and stable manifolds. 
 

6 2 2(0, ,0, )E x z : From (3.2), the variational matrix evaluated at 6E could be written as 

6 2 2 4 4(0, ,0, ) ( )ijM x z m ×= ,  

where   11 2 12 13 14 21 2 2 2 2 2(0, ), 0, (0, ) (0, ),u um h x m m m m x g x z p x= = = = = −α  

22 2 2 2 2 2 2 23 1 2(0, ) (0, ) (0, ) (0, ),x xm x g x g x z p x m p x= + − = −α α  
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24 2 2 31 32 34 41 2 2 2 2(0, ), 0, (0, ),um p x m m m m z c p x= − = = = =  

42 2 2 2 2 43 44 2 2 2 2 2 2(0, ), 0, ( ) (0) (0, )xm z c p x m m s z q c p x= = = − − + , 

33 1 1 2 1 1 2(0) ( ) (0, ),m s q z c p x= − − +  

Eigen values in u-direction is given by  

2(0, )u h x=λ >0   (by H1-a),  

which implies that 6E is unstable in u-direction, the population of mutualist increases near 

6E . The eigen value in y-direction is given by 

1 1 1 2 1 2(4.6 ) (0) (0, ) ( )ya s c p x q z= − + −λ .                                     

The other two eigen values namely in x and z-directions have negative real parts if and only 

if                                    

2 2 2 2 2 2 2 2 2(4.6 ) (0, ) (0, ) (0, ) ( ) 0x xb x g x g x z p x z s z′+ − − <α α ,                 

and  

2 2 2 2 2 2 2 2 2 2 2 2 2 2(4.6 ) [ (0, ) (0, ) (0, )] (0, ) (0, ) 0x x xc z s x g x g x z p x z c p x p x′ + − − <α α .   
 

In view of above analysis, we have the following theorem: 

Theorem 4.3: If conditions (4.6b) and (4.6c) are satisfied, and then 6E  is 

asymptotically stable in xz plane, but unstable in u-direction i.e., population of mutualist 

increases, while that of x and y decreases near point 6E . 

7 3 3 3( , , ,0)E u x y : This is interior equilibrium uxy
+
ℝ , in the absence of predator z. 

Detail analysis of this situation may be found in Rai et al
11

. Moreover the variational matrix 

evaluated at 7E is given by: 

7 3 3 3 4 4( , , ,0) ( )ijM u x y m ×= , 

where 11 3 3 3 12 3 3 3 13 14( , ,0,0), ( , ,0,0), 0,u xm u h u x m u h u x m m= = = =  

21 3 3 3 3 1 3 3 22 3 3 3 3 3 3 1 3 3( , ) ( , ), ( , ) ( , ) ( , )u u x xm x g u x y p u x m x g u x g u x y p u x= − = + −α α α , 

23 1 3 3 24 2 3 3 31 3 1 1 3 3 32 3 1 1 3 3( , ), ( , ), [ ( , )], ( , )u xm p u x m p u x m y c p u x m y c p u x= − = − = = , 

      33 1 3 1 1 1 3 3 3 1 34 3 1 41 42 43( ) (0) ( , ) , (0), 0m s y q c p u x y s m y q m m m′ ′= − − + − = − = = = , 

44 2 2 3 2 2 3 3(0) ( ) ( , )m s q y c p u x= − − + . 
 

The eigen value in z-direction is given by  

2 2 2 3 3 2 3(4.7 ) (0) ( , ) ( )za s c p u x q y= − + −λ . 

The other three eigen values are the zeros of the polynomial 

3 2
1 2 3(4.7 ) 0b A A A+ + + =λ λ λ ,    

where 1 3 3 3 3 3 3 3 3 3 3 1 3 3 1 3{ ( , , ,0) ( , ) ( , ) ( , ) ( )}u x xA u h u x y x g u x g u x y p u x s yα α ′= − + + − +  
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2 3 3 3 3 3 3 3 3 3 3 1 3 3 3 1 3

3 1 1 3 3 1 3 3 3 1 3 3 3 3 3 3 3 1 3 3

3 3 3 3 3 3 3 3 1 3 3

3 3 3 3 3

( , , ,0)[ ( , ) ( , ) ( , ) ( )]

( , ) ( , ) ( )[ ( , ) ( , ) ( , )]

( , , ,0)[ ( , ) ( , )]

( , , ,0)

u x x

x x x

x x x

x

A u h u x y x g u x g u x y p u x y s y

y c p u x p u x y s y x g u x g u x y p u x

u h u x y x g u x y p u x

u y h u x y

′= + − −

′+ − + −

− − −

α α

α α

α

1 3 1 1 3 3 1 3 3[ ( ) ( , ) ( , )]xs y c p u x p u x′− + +

 

3 3 3 3 3 3 3 1 3 3 3 3 3 1 1 3 3

3 3 3 1 3 3 3 3 1 1 3 3 1 3 3

1 3 3 3 3 3 3 3 1 3 3

1 3 1 1 3 3 1 1 3 3

[ [ ( , ) ( , ){ ( , , ,0) ( , )

( , , ,0) }] ( , , ,0)[ ( , ) ( , )

( ){ ( , ) ( , ) ( , )}]

[ ( ) ( , ) ( , )

u u x x

x u x

x x

u

A u y x g u x y p u x h u x y c p u x

h u x y s y h u x y c p u x p u x

s y x g u x g u x y p u x

s y c p u x c p u x

α

α α

= − −

− −

′− + −

+ − + + ]]

 

Therefore, in the light of above analysis and applying Rough-Hurwitz criteria we have the 

following result: 

Theorem 4.3: 7E  is  asymptotically stable if the following conditions hold 

          (1) zλ <0     and  

          (2) 1A >0, 3A >0      and 1 2 3A A A− >0. 

In other words, if the above mentioned conditions are satisfied, then solutions of the system, 

initiating near 7E , eventually tend to 7E  as t → ∞ . 

 

8 4 4 4( , ,0, )E u x z : From (3.2), the variational matrix evaluated at 8E could be written as 

8 4 4 4 4 4( , ,0, ) ( )ijM u x z m ×= ,  

where 11 4 4 4 4 12 4 4 4 4 13 14( , ,0, ), ( , ,0, ), 0,u xm u h u x z m u h u x z m m= = = =  

21 4 4 4 4 2 4 4 22 4 4 4 4 4 4 2 4 4

23 1 4 4 24 2 4 4 31 32 34,

33 1 1 4 1 1 4 4 41 4 2 2 4 4 42 4 2 2 4 4

43 4 2 44

( , ) ( , ), ( , ) ( , ) ( , )

( , ), ( , ), 0

(0) ( ) ( , ), ( , ), ( , ),

(0),

u u x x

u

m x g u x z p u x m x g u x g u x z p u x

m p u x m p u x m m m

m s q z c p u x m z c p u x m z c p u x

m z q m s

= − = + −

= − = − = = =

= − − + = =

′= − = −

α α α

2 4 2 2 2 4 4 4 2 4( ) (0) ( , ) ( )z q c p u x z s z′− + −

 

The eigen value of 8M  in y-direction is given by  

1 1 1 4 4 1 4(4.8 ) (0) ( , ) ( )ya s c p u x q z= − + −λ .      

The other three eigen values are the zeros of the polynomial 

3 2
1 2 3(4.8 ) 0,b B B B+ + + =λ λ λ                                                                 

where  

1 4 4 4 4 4 4 4 4 4 4 2 4 4[ ( , ,0, ) ( , ) ( , ) ( , )]u x xB u h u x z x g u x g u x z p u xα α= − + + −  
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2 4 4 4 4 4 4 4 4 4 4 2 4 4

4 2 2 4 4 2 4 4 4 2 4 4 4 4 4 4

4 2 4 4 4 4 4 4 4 4 4 4 2 4 4

4 2 4 4 2 4 2 2 4

( , ,0, )[ ( , ) ( , ) ( , )]

( , ) ( , ) ( )[ ( , ) ( , )

( , )] ( , ,0, )[ ( , ) ( , )]

( , )[ ( ) ( ,

u x x

x x

x x u u

B u h u x z x g u x g u x z p u x

z c p u x p u x z s z x g u x g u x

z p u x u h u x z x g u x z p u x

z p u x s z c p u

= + −

′+ − +

− − −

+ − +

α α

α α

α

4 2 2 4 4) ( , )]ux c p u x+

 

 

3 4 4 4 4 4 4 2 4 4 2 4 4 4 2 4 4

4 4 4 2 4 4 4 4 2 2 4 4 2 4 4 2 4

4 4 4 4 4 4 2 4 4 4 4 2 2 4 4

[ [{ ( , ) ( , )}{ ( , ,0, ) ( , )

( , ,0, ) ( )}] ( , ,0, )[{ ( , ) ( , ) ( )}

{ ( , ) ( , ) ( , )}] [ ( ) ( , )]]

u u x x

x u x

x x u

B u z x g u x z p u x c h u x z p u x

h u x z s z h u x z c p u x p u x s z

x g u x g u x z p u x s z c p u x

α

α α

= − −

− − −

+ − + − +

 

  

Therefore, in the light of above analysis and applying Rough-Hurwitz criteria we have the 

following result: 

Theorem 4.4: 8E is asymptotically stable if the following conditions hold 

(1) yλ <0     and  

(2) 1B >0, 3B >0      and 1 2 3B B B− >0. 

 

9 ( , , , )E u x y z∗ ∗ ∗ ∗ : Finally, we investigate the stability of interior equilibrium.ted in 

two- and three-dimensional models
13,16

. However mutualistic interactions can have a 

significant effect on stability, even in the complex systems. In order to conclude ourselves, 

we follow the technique given in paper
9
. From (3.2), the variational matrix evaluated at 

E∗ could be written as 

4 4( , , , ) ( ) ,ijM u x y z m
∗ ∗ ∗ ∗ ∗

×=  

where 11 12 13 14( , , , ), ( , , , ), 0,u xm u h u x y z m u h u x y z m m∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= = = =  

21 2 1( , ) ( , ) ( , ),u u um x g u x z p u x y p u x∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= − −α  

22 1 2( , ) ( , ) ( , )x x xm x g u x y p u x z p u x∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= +α , 

23 1 24 2 31 1 1( , ), ( , ), ( , ),um p u x m p u x m y c p u x∗ ∗ ∗ ∗ ∗ ∗ ∗= − = − =  

32 1 1 33 1 1 1 1 1( , ), ( ) ( ) ( ) ( , ),xm y c p u x m s y q z y s y c p u x∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗′= = − − − −  

34 1 41 2 2 42 2 2( ), ( , ), ( , ),um y q z m z c p u x m z c p u x∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= − = =  

43 2 44 2 2 2 2 2( ), ( ) ( ) ( , ) ( ).m z q y m s z q y c p u x z s z∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗′ ′= − = − − + −  
 

The eigen values of the above matrix are the roots of the characteristic polynomial 

4 3 2
1 2 3 4(4.9) 0a a a a+ + + + =λ λ λ λ ,                                    

1

1 2 1 2 1 1

where   [ ( , , , ) { ( , ) ( , )}

{ ( , ) ( ) ( )} ( , ) ( ) ( )]

u x

x

a u h u x y z x g u x g u x

y p u x s y q z z p u x s y q z

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= − + + −

− − − − −

α
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11 13 22 23 33 3411 12 11 14 22 24
2

31 33 33 43 4421 22 41 44 42 44

1 2

1 2

32

( , , , )[( ( , ) , ) ( , ) ( , )]

( , , , )[ ( , ) ( , ) (

u x x x

x u u u

a a a a a aa a a a a a
a

a a a a a aa a a a a a

u h u x y z x g u x gu x y p u x z p u x

u h u x y z x g u x y p u x z p u

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= + + + + +

= + − −

− − −

α α

α

1 2

1 2 1 1 1 1 2

1 1 1 1

, )]

( , , , ) ( , ) ( , , , ) ( , ) [ ( , )

, ) ( , ) ( , )][ ( ) ( ) ( , ) ( )]

( , ) ( , ) [{ ( , ) ( , )

u u x

x x

x u u

x

u h u x y z p u x u h u x y z p u x x g u x

gu x y p u x z p u x s y q z c p u x y s y

y c p u x p u x x g u x y p u x

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− − +

+ − − − − + −

+ + − −

α

α

α 2

2 2 2 2 2 2 2 2

1 1 1 1 2

2 2 2 2 2 2 1

( , )}

{ ( ) ( ) ( , ) ( ) ( , ) ( , )}]

{ ( ) ( ) ( , ) ( )}

{ ( ) ( ) ( , ) ( ) ( ) ( )},

u

x

z p u x

s z q y c p u x z s z z c p u x p u x

s y q z c p u x y s y

s z q y c p u x z s z z y q y q z

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− − + − + +

− − + −

′ ′− − + − −

 

 

3 1 2

1 1 1 1 1 2 2 2 2 2

1 2 1 1 1 1 1

{ ( , ) ( , ) ( , ) ( , )

[{ ( ) ( ) ( , ) ( )}{ ( ) ( ) ( , ) ( )}

( ) ( ) ( , , , )[{ ( ) ( ) ( , )

x x x

u

a x g u x g u x y p u x z p u x

s y q z c p u x y s y s z q y c p u x z s z

z y q y q z u h u x y z s y q z c p u x y s

α α∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= − + − −

′ ′− − + − − − + −

′ ′+ + − − + −

1 1 1 1 1

1 2

2 2 2 2 2 2 2 2

( )}

{ ( ) ( ) ( , ) ( )}] ( , , , )[

{ ( , ) ( , ) ( , ) ( , )}

{ ( ) ( ) ( , ) ( ) ( , ) ( , )}]

( , , , )[{

u

x x x

x

x

y

s y q z c p u x y s y u h u x y z

x g u x g u x y p u x z p u x

s z q y c p u x z s z z c p u x p u x

u h u x y z x

α α

α

∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

′

′− − + − +

+ − −

′− − + − +

− 1 2

2 2 2 2 2 2 2 2

1 2

1 1 1 1 1

( , ) ( , ) ( , )}

{ ( ) ( ) ( , ) ( ) ( , ) ( , )}]

( , , , )[{ ( , ) ( , ) ( , ) ( , )}

{ ( ) ( ) ( , )

u u u

u

u x x x

g u x y p u x z p u x

s z q y c p u x z s z c z p u x p u x

u h u x y z x g u x g u x y p u x z p u x

s y q z c p u x y s

α α

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

− −

′− − + − +

+ − −

′− − + − 1 1 1

1 2

1 1 1 1 1 1 1 1

( ) ( , ) ( , )}]

( , , , )[{ ( , ) ( , ) ( , )}

{ ( ) ( ) ( , ) ( ) ( , ) ( , )}]},

x

x u u u

u

y y c p u x p u x

u h u x y z x g u x y p u x z p u x

s y q z c p u x y s y y c p u x p u x

α

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

+

+ − −

′− − + − +  
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4 1 2

1 1 1 1 2 2 2 2 2 2

1 2 1 1 1 2

( , , , )[{ ( , ) ( , ) ( , ) ( , )}

{ ( ) ( ) ( , ) ( )}{ ( ) ( ) ( , ) ( )

( ) ( )} ( , ) ( , ){ ( )

u x x x

x

a u h u x y z x g u x g u x y p u x z p u x

s y q z c p u x y s z s z q y c p u x z s z

z y q z q y p u x y c p u x s z q

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= + − −

′ ′− − + − − − + −

′ ′− + − −

α α

2 2 2

2 2 2 1 2 1 1 2

2 2 1 1 1 1 2

1 2

( ) ( , )

( ) ( , ) ( )} ( , ){ ( , ) ( )

( , )}{ ( ) ( ) ( , ) ( )}] ( , , , )

[ ( , ) ( , ) ( , ){

x x

x x

u u u

y c p u x

z s z z y c p u x q z p u x y c p u x z q y

z c p u x s y q z c p u x y s z u h u x y z

x g u x y p u x z p u x

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

+

′ ′ ′− + −

′− − − + − −

− − −α 1 1 1 1 2

2 2 2 2 2 1 2 1 1

2 2 2 2 2 2 1 2

1 1 2

( ) ( ) ( , ) ( )}

{ ( ) ( ) ( , ) ( ) ( ) ( )} ( , ) ( , )

{ ( ) ( ) ( , ) ( , ) ( )} ( , )

{ ( , ) ( )

u

u

u

s y q z c p u x y s z

s z q y c p u x z s z z y q z q y p u x y p u x

s z q y c p u x c z y p u x q z p u x

y c p u x q y c

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

′− + −

′ ′ ′− − + − − +

′− − + + −

− 1 2 1 1 1 1 2( , )}{ ( ) ( ) ( , ) ( )}]uz p u x s y q z c p u x y s z
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗′− − + −

 

 

Now in view of above calculations, we have the following result: 

Theorem 4.6: Equilibrium state E∗
is locally asymptotically stable if 

1. 4a >0, 2a >0, 1a >0, 

2. 2
3 1 2 3 1 4[ ] .a a a a a a− > . 

 

5. Global stability of the interior equilibrium 
 

In this section we will discuss the conditions for the global stability of the equilibrium 

point 9 ( , , , ).E u x y z∗ ∗ ∗ ∗  

          For, we assume that  10E  as defined in the previous section exists. For convenience 

of notation, we relable 9E  as ( , , , ).E u x y z∗ ∗ ∗ ∗ ∗  It is the purpose of this section is to derive 

criterion for E∗ to be globally stable i.e. E∗  to be asymptotically stable with domain of 

attraction the positive cone. For this our technique will be to construct a Lyapunov 

function
10,11

, whose domain of validity is the positive cone. 

First, we define 

( )

1 2

3 4
2 1

( ) log , ( ) log ,

( , , , ) ( , , , )
( ) , ( ) .

( )

y z

y z

u x
v u u u u v x x x x

u x

P u x z Q u x y
v y d v z d

q q
∗ ∗

   
= − ∗ − ∗ = − ∗ − ∗   ∗ ∗   

∗ ∗ ∗ ∗ ∗ ∗
= =∫ ∫

ξ ξ
ξ ξ

ξ ξ

 

where  2 2 2 2( , , , ) ( ) ( ) ( , )P u x z s z q c p x u∗ ∗ ∗ = − ∗ − + ∗ ∗ξ ξ , 

1 1 1 1( , , , ) ( ) ( ) ( , )Q u x y s y q c p x u∗ ∗ ∗ = − − + ∗ ∗ξ ξ , 
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( ), , , , and 1,2,3,4iv u x y z i= =χ χ  

We note that 

⌢

0

1. ( ) 0, 0 ,

2. ( ) 0

3. lim ( ) lim ( )

i

i

i

v for

v

v
→+∞ →+

> > ≠ ∗

∗ =

= = +∞
χ χ

χ χ χ χ

χ

χ χ

 

3
0

4
0

4. ( ) 0 lim

5. ( ) 0 lim

y

z

v y and

v z and

+

+

→

→

∗ = = +∞

∗ = = +∞
  

3

3 3 3 3

1 1

4 4

Functions & areassumed to besuch that lim ( ) and

( ) is lim ( ) lim ( ) lim ( ) ositive

for , where is anyarbitriarysmall number.

Also is such that lim ( ) and ( ) is positi

y

y y y

z

P Q v y

v y p v y v y v y

y k

Q v z v z

→∞

→∞ →∞ →∞

→∞

= +∞

= +∞ + ∞ = +∞ = +∞

≤ +

= +∞

ε ε

2,

2

ve for ,

where is anyarbitriarysmall positive number.

z k≤ + ε

ε

  

Finally, we define, 

1 2 3 4(5.1) ( , , , ) ( ) ( ) ( ) ( )v u x y z v u v x v y v z= + + +                                                                   

And note that v is a positive function in the positive cone with respect to E ∗  in 4
+R . 

We now compute ( , , , )v u x y zɺ , the trajectory derivative of v(u,x,y,z) along solutions of 

system (3.1). 

1 2 3 4(5.2) ( , , , ) ( ) ( ) ( ) ( )v u x y z v u u v x x v y y v z z′ ′ ′ ′= + + +ɺ ɺ ɺ ɺ ɺ                                    

The components of vɺ  are worked out as: 

31 2 4

2 1

( , , , ) ( , , , )
, , ,

( ) ( )

vv v vu u x x P u x y z Q u x y z

u u x x y q y z q z

∂∂ ∂ ∂− ∗ − ∗ ∗ ∗ ∗ ∗ ∗ ∗
= = = =

∂ ∂ ∂ ∂
 

We now consider the derivative of v along solutions,  

1 2

1 1 1 1
2

2 2 2 2
1

( , ) ( , )
(5.3) ( , , , ) ( ) ( , , , ) ( )[ ( , ) ]

( , , , )
[ ( ) ( ) ( , )]

( )

( , , , )
[ ( ) ( ) ( , )]

( )

yp x u zp x u
v u x y z u u h u x y z x x g x u

x x

P u x y z
s y q z c p x u y

q y

Q u x y z
s z q y c p x u z

q z

∗

∗ ∗

= − + − ∗ − −

∗ ∗ ∗
+ − − +

∗
+ − − +

ɺ α

 

By substitution and some algebraic manipulations, equation (3) can be written as:  
 

11 12 13 14 22 23 24 33 34 44(5.4) ( , , , )v u x y z a a a a a a a a a a= + + + + + + + + +ɺ                     
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where  11( ) ( ) ( , , , )a u u u h u x y z∗ ∗ ∗ ∗= − , 

12

1 2

( , ) ( )[ ( , , , ) ( , , , )]

( )[ ( , ) ( , ) ( , ) ( , )],

a u x u u h u x y z h u x y z

x x g x u g u x y p u x z p u x

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

= − − +

− − ∗ − −
 

13
1

( , , , )
( )[ ( , , , ) ( , , , )] [( )( )],

( )

Q u x y z
a u u h u x y z h u x y z u u y y

q y

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= − − + − −  

14
2

( , , , )
( )[ ( , , , ) ( , , , )] [( )( )]

( )

P u x y z
a u u h u x y z h u x y z u u z z

q z

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= − − + − −

 1 2
22

( , ) ( , )
( )[ ( , ) ]

p x u p x u
a x x g x u y z

x x

∗= − − −α

 

23

2 1

24

1 2

( , , , ) ( , , , )
( )( ) ( )( )

( ) ( )

( , , , ) ( , , , )
( )( ) ( ( )

( ) ( )

P u x y z Q u x y z
a x x y y x x z z

q y q z

Q u x y z P u x y z
a x x z z x x y y

q z q y

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

= − − − − − −

= − − − − −

 

33 1 1 1 1
2

34
1 2

44 2 2 2 2
1

( , , , )
[ ( ) ( ) ( , )]

( )

( , , , ) ( , , , )
( )( ) ( )( )

( ) ( )

( , , , )
[ ( ) ( ) ( , )]

( )

P u x y z
a s y q z c p x u y

q y

Q u x y z P u x y z
a y y z z x x z z

q y q y

Q u x y z
a s z q y c p x u z

q z

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗

= − − +

−
= − − − + − −

= − − +

 

From above notations and utilizing the techniques given in papers
12,13

, we may deduce that 

ija ’s such that: 

  

2
11 11 12 12

13 13 14 14

( )( ) , 2 ( , )( )( ),

2 ( , )( )( ), 2 ( , )( )( ),

a b u u u a b u x u u x x

a b u y u u y y a b u z u u z z

∗ ∗ ∗

∗ ∗ ∗ ∗

= − − = − − −

= − − − = − − −

 

2
22 22 23 23

2
24 24 33 33

2
34 34 44 44

( )( ) , 2 ( , )( )( ),

2 ( , )( )( ), ( )( ) ,

2 ( , )( )( ), ( )( ) .

a b x x x a b x y x x y y

a b x z x x z z a b y y y

a b y z y y z z a b z z z

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

= − − = − − −

= − − − = − −

= − − − = − −

 

With above notations, equation (4) can be re written as: 

(5.5)  Tv PBP= −ɺ                              

where B is a 4 4×  matrix  B(u,x,y,z), whose thij  term is ijb and ij jib b=  

         ( ) ( ) ( ) ( )P u u x x y y z z∗ ∗ ∗ ∗ = − − − −   

and TP  is the transpose matrix of P. 
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From above, we can state the following theorem: 

Theorem: Let B (u,x,y,z) be a positive matrix for all 4X Int +∈ Ω ∩ ℝ .Then E∗ is 

globally asymptotically stable equilibrium of the system (3.1) with respect to initial values 

in 4Int +ℝ . 

Proof.  Let X = {u(t), x(t), y(t), z(t)} be any solution of (3.1) and 4X Int +∈ Ω ∩ ℝ . 

Since B is positive definite, ( ) 0.v X ≤ɺ  The set 4{ : ( ) 0}X Int v X+∈ Ω ∩ =ℝ is a subset of  

4{ : }.S X Int X X ∗
+= ∈ =ℝ  S is the largest invariant set in S is the equilibrium point E∗

, 

therefore by LaSalle’s invariance principle
10

, E∗  globally asymptotically stable. 

 

6. Example 
 

In order to illustrate the above analysis we consider the following example. All 

coefficients and functions are taken for mathematical convenience, not exactly from a real 

ecological system. 

(6.1)   

[1 ]
3

4 (1 )
4

1
[ 3 ]

3

1
[ 3 ]

3

du u
u

dt x

dx x
x xy xz

dt

dy
y z x

dt

dz
z y x

dt

= −
+

= − − −

= − − +

= − − +

                                         

Clearly system of equations (6.1) satisfies all the mathematical restrictions assumed in 

hypothesis. After solving the algebraic system, 

(6.2)   

[1 ] 0
3

4 (1 ) 0
4

1
[ 3 ] 0

3

1
[ 3 ] 0

3

u
u

x

x
x xy xz

y z x

z y x

− =
+

− − − =

− − + =

− − + =

                                        

We obtain the following equilibrium states: 

1 2 3 4 5

13 35
(0,0,0,0), (3,0,0,0), (0,4,0,0), (0, , ,0), (7,4,0,0),

12 12
E E E E E  

6 7 8 9

13 35 49 13 35 28 1 35 2 5 5
(0, ,0, ), ( , , ,0), ( , .0, ), (0, , , )

12 12 12 12 12 9 9 9 3 3 3
E E E E  

11 2 35 35
( , , , )
13 3 21 21

E∗                                        
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where parameters are taken as 

1
0 0 1 2 1 2 1 23

3, 4, 1, , 3, 1, 0L k s s c c m= = = = = = = = = = = =α γ δ δ δ . 

Region of attraction is 

35 35
{( , , , ) : 0 7;0 4;0 ;0 }

12 9
u x y z u x y zΩ = ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ .  

Discussion: In this paper we have considered a system of four autonomous differential 

equations as a model of four interacting populations, two species competing with each other 

for a single prey and a prey mutualist. Our main interest was to give criteria for existence of 

various equilibrium points and their stability in a bounded region. We have been able to 

obtain such criteria in terms parameters of the system and have illustrated the conclusions 

with a numerical example. 
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