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Abstract: In the present paper we have worked out the non-linear connection of
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1. Preliminaries

The theory of m-th root metrics was developed by H. Shimada' as an interesting
example of Finsler metrics, immediately after M. Matsumoto and S. Numata’s theory of
cubic metrics’. By introducing the regularity of the metric various fundamental quantities as
a Finsler metric could be found. In particular, the Cartan connection of a Finsler space with
m-th root metric could be discussed from the theoretical standpoint. M. Matsumoto and K.
Okubo® studied Berwald connection of Finsler spaces with m-th root metric and gave main
scalars in two-dimensional case and also defined higher order Christoffel symbols.

In 1992-93 the m-th root metrics have begun to be applied to theoretical physics4’ ° but
the results of our investigations are not yet ready for acceding to the demands of various
applications. The purpose of present paper is to study three-dimensional case and give the
main scalars, in particular, of cubic metrics and quartic metrics. Since the scalars make
clear the essential difference from the Riemannian structure, we have good reason to
anticipate physical meanings of those scalars.

The m-th root Finsler metric L(x, y) of an n-dimensional differentiable manifold "
was defined by H. Shimada' as

L'(uy)=a; ()Y s yin

where the coefficients @, _; (x) are components of a symmetric tensor field covariant of

order m. Consequently the second root metric is, of course, a Riemannian metric and we
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shall restrict m > 2 throughout the paper. The third and fourth root metrics are especially
interesting and have the well known names:

L*(x,y)= g (%) yiylyk Cubic metric®*

LY(x,y)= i x)y"y'y/y* ... Quartic metric’.

We shall sketch some fundamental part of the theory of Finsler spaces F"=(M",L)
with m-th root metric L(x, y) for the later use.

Let us first define the tensors a;(x, y), a;(x, y) and a;(x, y) as follows:

(m=1) — .i| jm—l)
L a;= aii. ot /AR y
(m=2) _ k K2
(1.1) L™ %a j=ag g Ve yro
(m=3) _ ] bin-s
L77a =, g, V' oo yer

Then, the normalized supporting element [, =9,L , the angular metric tensor, h; =L0,0;L,
the fundamental tensor g; =9,0 jLz/ 2 and the (h)hv-torsion tensor Cy =9,0 jékLz/ 4 of the
Cartan connection CI" of F"=(M",L) are written as
(1.2) l=a, by =(m-1)(a; —aa;), g;=(m—-a;—(m-2)aa,,

2LCU-k =(m—-1)(m— 2)(al_-/-k —a,a; —aua; —a,a; + Zaiajak) .
We have the following relations among a;(x, y), a;(x, y) and a;;(x, y):
1. ay =L aij)/=Lai, aijkyk=Laij
2. (aj.aq aj)yj =0, (ag-a;ay) yk =0
(1.3) 3. (ag-a;ay) yk=L(ajk,aj a)
4. L( 91( a;) = (m-2) (ag .a; ax)

Let us call a;(x, y) as the basic tensor because this played an important role"?. The
metric L is called regular if the basic tensor has the non-vanishing determinant. Throughout
our discussion of m-th root metrics we would suppose the regularity of the metrics.

By 4" (x, y) we denote the reciprocal of a;(x, y), then the reciprocal g7 (x, y) of gi(x, y)
is given as
(m-1) g'j= a’ + (m-2)d'a’, I'=d",
where g’ =1, a =aijaj L= yi/Lz giilj .
We shall also consider the Berwald connection*® BI' = (Gjik, Gij, 0) and Cartan
connection CI" = (Fj'y, G}, Cj\) of F".

2. Finsler connections of m-th root metrics

The coefficients (Fjik, Gij) of the Berwald connection and the Cartan connection of a
Finsler space with m-th root metric are given by3
m—2
2L

m—2
T (aijr - aijar)Grk -

(21) Clerkri = fijk — (ajkr - ajkar)Gri
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m—2
+ ir ~ ilr Gr'
oL (akj aya ) j
2(m—1 r 1 1 r
(2.2) ’(:1_ ) a;G'j= fijo + %fjio + ?foooaij - Z(fiooaij — fiooai +owdi §)
or
2(m—1) P 1 1 r
(2.3) o2 a; ;= W {(m'z)AijO + mAjio} - m aij{(m'z)At()O
+ mAgyy}
" -2
(24) 2(m—l)aer = f()j() + m f()()()Clj .
r 1 m—2
2.5) 2(m-1)a;G' = Py (Agjo + —— Ajoo)s

where G' = G'y'/2,
Aijk(x7 y): (akaijrlrzmwrm,2 +0,a L —0,q, )y

i jknry......r,, JjYiknry.......r,
and 2fy = dya;+9d,a; —9d,a, . The symbol O denotes contraction by y' except in the
quantities ¢, and c,q which occur latter.

K. Okubo™ generalized the Christoffel symbols as follows:
Definition: For a symmetric covariant tensor field ¢ ; (x) of order m the

Christoffel symbols of m-th order are defined by

{ijiyeen.. iy, Jj)= (ailai2 i +3i2ai} i +ai}ai4 ij e —ajal-J l)

1
2>m—1)
where the cyclic permutation is applied to {ii,.......i,, } in the first m terms of the right hand
side. From the definition we get immediately
(2.6) 0,6 ;= {igeeeedy ol } F oo TE7 Y A Y (S A

where the first m terms of the right-hand side are constructed by cyclic permutation of

From (2.5), we have
(Bkal-jrl,zwurw2 ) yiytay = {jkO....... 0,1} + {kiO....... 0,j} +
(m -2) [{jjkO0.....0, 0} - {jjO....0, k}]

Consequently Ajj, can be written in terms of Christoffel symbols of m-th order as
Ajjc = m{kiO...... 0,j} - (m-2)[{j0...... 0, k} + {jk0.....0, 1} — {ijkO0.....0, 0}]

Therefore a, G" of (2.3) can be written as

irj
@7 0,G = ﬁ{jo ...... 0.i) - n;";zafj{o ........... 0, 1}

while (2.5) is written in the form
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1

(28) airG = W {0 ........ 0, 1}
As a consequence of (2.8) the geodesics can be given by the differential equations
d*x' 2 dx dxn
2.9 i + = Jjeeeene ] S =0
@9 a; ds> m {Jl Jm l} ds ds

i

i X .
where y = d_ 1n a;;.
A

Theorem 1: The nonlinear connection Gij(x, y) of the Berwald connection and Cartan
connection of a Finsler space with m-th root metric is given by (2.7). The equations of
geodesic are written in the form (2.9).

Remark: In the Riemannian case (m=2), the equation (2.9) reduces to the usual
equation of geodesic.

3. Three-dimensional Finsler space with special m-th root metric
Example 1: We are concerned with a cubic metric (m = 3) of dimension three. For

brevity, we shall write (x) and (') as (x, y, z) and ( x,y,z ) respectively, and L(x,y,z;%,7,2)
in the form

3_ . .3 2. ) -3 2, L2 C .2
3.1 L’=cyx +3cix"y +3cx y +c3y +3c4x " z+3¢cs5x 27 +3¢c6y 2

+3C7)';22 +6c3x y 2 +c923

where

(11, Qrigs Gy, Gopo, 13, H33, T3z, Ho23, @3, T333) = (Co, €y, €2, C3, C4, Cs, Cg, C7, Cs, Co)

ac,

which are functions of (x, y, z). We put o =c,, %=0,1,2,......9and i =1, 2, 3. Then we
X

get thirty Christoffel symbols of third order as follows:

{111, 1} = co1/2 {111,2} = Beycg)/d {111, 3} = Begy-cos)/d
{112, 1} = (copte DA {112,2} =cy/2 {112, 3} = (2cg +car-cy3)/d
{122, 1}=c,,/2 {122,2} = (cotes)d {122, 3} = (cr1+205-Coz)/4
{222, 1} = Bepca)d  {222,2) =32 {222, 3} = Bcp-ca3)/d

(113, 1} = (coztea)d  {113,2} = Qegitezep)/d  {113,3} =c5,/2
{133, 1} = cys/2 {133, 2} = (Qcgstcg-cs)/d  {133,3) = (cortess)/4
{233, 1} = Qegstesrce )4 {233,2) = cp5/2 {233, 3} = (cortcg)/d
{223, 1} = Qegpterscr )4 {223,2) = (cobep)/d {223,3} = cel2
{123, 1} = (cartci3)/d {123,2) = (cri+cop)d {123, 3} = (cqrtcs)/d

{333, 1}:(3C53-C91)/4 {333, 2}:(3C63-C92)/4 {333, 3}:C93/2.
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Now H=L'det(a)) =Ax’+Bi’y+Cx y’+Dy ’ +Ex’z +Fx °+Ky’z + My z°
+Nz +Pi y 2,
where
A = cycocs- 00082 +2C Cy4Cq - 01205 - 04202
B= CoCrCq - C1CrC5+ CoC5C3 - 2COC8C7 + 2C1C4C7 - C12C6 + C1C82 - C42C3
C= C1C3C5+ C3C4Co - CeC1Co - C6C72 + 2C2C7C4 + C2C82 - C22C5 - 2C4C3C3
D= C1C3C¢ - C1C72 + 2C2C7Cg - C22C6 - C82C3
E= CpC2Cg - CC5C4 + CoC5C7 - 2C8C6C0 + 2C1C4C6 - C12C9 + C4Cg2 - C42C7
F= C7CgCo - C4C7C5+ C4CoCy - C0C62 + 2C6C5C1 - 2C1C8C9 + C5Cg2 - C52C2
K= C1C3C9 + C3C4Cy - C1C6CT - C72C4 + 2C2C7C5 + C7Cg2 - C22C9 - 2C3C5Cg
M = c;c9c - €4C7C6 + C4CoC3 - 06201 + 08206 + 2C,C5Cq - 2C»CgCo - 05203
N =c4cic9- 06204 + 2C5C4Cs - 03209 - 05207

3
P = cyc3c9+ 3¢1C7C54+ 3C5C4C6 - 2C4C7Cs - CoCsCr - 2C1C6Cs + 2C5” - C1CoCo —
2C2C3C5 - C3C4Cs.

Then from (2.8), we get

a,,G' +a,,G* +a,,G> =3LL{000,1}

(3.2) ay,G' +a,G* +a,,G? =3LL{000,2}

a3, G' +a;,G* +ay,G =i{000,3}

By equation (3.2) we get

{000,1} a;, a3
BH)(2G") = I2|{000,2} ay, ax
{000,3) a3, as

ay {000,1}  ay
(3.3) BH)(2G*) =I*|a,; {000,2} a,,
az, {000,3}  ay;

a;, a, {000,1}
BH)2G*) =1 ay, ay,, {000,2}
ay;  a; {000,3}

Theorem 2: The equations (3.3) give G' and hence the Berwald connection BI of cubic
metric in F°.
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Example 2: In quartic metric theories of gravity, I. W. Roxburgh® paid special
attention to the strongly spherically symmetric metric
4 4 2,72 —4
ds" =Adt"+Bdt“dx +Cdx ,
where A, B, C are functions of the Newtonian potential U = m/r, where P =x+ y2 + 7% and

-2 . . . . .
dx =dx’ +dy2 +d72. Though this metric is of four-dimension, we shall reduce it to three-
dimension and consider a special quartic metric of the form

(3.4) L'=coi+6c5%y2+cyy +6c522% 6057222 +caz?

where (Co, C2, €4, Co, Cs, C1a) = (Qyin1, @122, Goozy, GQyisz, @posz, s333). The surviving
components of the Christoffel symbols of fourth order are as follows:

(1111, 1} = ci/2 {1111,2} = - cu/6 {1111, 3} =- cp3/6

{1112, 1} = col6
{1122, 1} = ¢5,/6
{1222, 1} = cpl2
{2222, 1} = - cy /6
{1113, 1} = co/6
{1133, 1} = ce//6
{1333, 1} = cey/2
{2233, 1} = - cg//6
{2333,1} =0
{2223,1} =0
{1233, 1} = cel6
{1223, 1} = c23/6
{1123,1} =0
{3333, 1} =-¢,4,/6

{1112,2} = cy/2
{1122,2} = cp/6
{1222,2} = cyy/6
{2222,2} = cpl2
{1113,2} =0
{1133,2} = - ceil6
{1333,2} =0
{2233, 2} = cpl6
{2333,2} = cg/2
{2223,2} = c,s/6
{1233, 2} = cg/6
{1223,2} =0
{1123,2} = c23/6
{3333,2} =-¢11/6

{1112,3} =0
{1122,3} = - cp/6
{1222,3} =0
{2222,3} = - cp/6
{1113,3} = ce/2
{1133, 3} = ce/6
{1333,3} =c141/6
{2233, 3} = cg3/6
{2333, 3} = ¢110/6
{2223,3} = cpl2
{1233,3} =0
{1223, 3} = cg/6
{1123, 3} = cel6
{3333,3} = c143/2.

i dy d

Next, we refer to the arc length s and put ( x,y,z) = ,—, .Then we have
ds ds ds

L(X, y, Z, ).C,).},Z.): 1 andall :C()).C2+ C2y2+CGZ.2, ap= ﬂ21: 2C2).C y,

. . ) .2 -2

aiz=az=2¢x z, ap=an=24y z, Ap=C X +C4y +CgZ7,
.2 .2 )

aA33=C4x +Cgy +Ci42".

Thus we obtain the equations of geodesic as follows:
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(o () + 0 (3)? +¢(2)2)E + (20249) 3 + (20427 + {%jl(fc)“ +%<x)3y
O C e S e O O N O IO
~SBL(5)2(2)% + 52 (1)(5)(2)? + B (0)(5)2(2) - L (5)*y =0

12 12 12 12
(20,53 + (03 (1) +¢4(3)7 +¢5(2)P)V + (2cgi)Z + {—%(x)“ +%<x)3y'

€0 20032 Car v o3 Cap o ovd Cop pen2n2 ) CRo a2 a2 €83 on3
HZ OO OO+ -0 O+ RGO G

a3 3y B o) 4 S 25— 42 (4 0
HEO O+ OO+ Z OO0 -2 0"
(2e62) 5+ (26450) 1 + (¢4 (0% + ey () + ey (2)D)E + {—%m“ —%o«ﬂy‘)z

284 5y 1560 (5)3(3) =583 ()2(2)% + 4L ()(2)% + 53 (3)2(5)2 + 942 (3)(3)?
m "+ 4(x) (2) 1 (0)7(2) 1 (0)(2) +12(y) ()" + 4 (M(2)

G2 5302+ D)) + S (02 (5)(2) + S (2 =
HE2(5°0) + B D)D)+ L2 @ (510 + L2 () =0

4. Main Scalars of three-dimensional Finsler space with m-th root metric

We shall consider a three-dimensional Finsler space F" with m-th root metric. In the
following the symbols (x, y, z) without dot will be used instead of (y', y°, y”).

If we put
A= a; - aia;,  Aik = ik - Gijdx - Aa; - Qad; + 2a;a;ay.
We have from (1.2)
4.1) hy=(m-DAy,  2LCy = (m-1)(m-2)Ajc
It follows from (1.3) that A;; and Aj;. satisfy
Aijyj =Aix +Apy + Az =0, Aijkyk: Ajix + Aipy + Aipz =0

Then we have
(4.2a) A =uAj +VA;,, Ay =ulA, +VvAy, Ay =uA;;+VvAy

and

Az =uhyy VA, Ay =uljy HVAy, Aisy =udj3 VA,
4.2b)

Agzy =uh 3 +VAy3, Agyy =UA gy + VAL, Aszy =33+ VAy;.

where we put u = - x/z, v = -y/z.

Since there are three equations and six unknown terms, so in general there are no
solutions or infinitely many solutions. So, we are putting

A=K, Ap=K,, Az =Ks,
where K, K,and Kj; are scalars. Then
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22K, — XK, + y’K,

A, = , A=
12 2ay 23 oy
A=z K, +x2K1 - yzK2
3=
—2xz
Thus we have
A=K, Ay =K,, Az;=Ks,
20 _ 2p 2 20 .2 2
(4.3) AIZ_ZKg x°K; sz, A23:ZK3 xK1+yK2’
2xy -2yz
22Ky + XK, - K,
A= )
2xz
Similarly by putting scalars G, G,, Gz G4such as
A =Gy Ay =G, Aszsz=Gs Ai3=Gy
we have
(4-4) A =G, Ay =G, Aszsz=Gj Ai3=Gy
2°G, + X°G, + y’G, G, - 2x°G, + y°G, - 3x*2G,
Ap=—""—FT""", Ap= >
2xyz —3xy
A = z3G3 - 2)C3Gl - 2y3G2 —3xzzG4 _ 3x3zG4 + z3G3 + x3Gl + y3G4
93 3y2Z > 133 —2x7* >
Ay = 223G3 —x3G1 - y3G2 - 3x2zG4

—3yz2
det(aij) = det(Aij+ aiaj).
Proposition 1: The regularity of m-th root metric of dimension three is equivalent
toK,#0, K,#0, K;#0in (4.3).

Now it is usual to use the Berwald frame (/,m,n ) for considering three dimensional

Finsler spaces, where [ is the normalized supporting element given now by /; = @; and m, n
are unit vectors orthogonal to / given by hy; = mm; + mn;. From

4.5) ml' = (myx +myy +myz)/L
ml' = (mx+nyy+nyz)/L
then by putting
4.5) m=p, my=q, n=p, ny=d,

mz= um; + vimy, n3=un;+ vn,
where p, q, p' and q' are scalars.
Next, the main scalars H, J, I of F are defined by4
(4.6) LCijk = Hmimjmk - JTc(ijk] (mimjnk )+ ITc(ijk} (minjnk) + Jninjnk
where m;, represent cyclic sum of the terms obtained by cyclic permutation of i, j, k.

According to (4.4) for instance
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2 _(m=Dm-2)

Hm' —J 3min, —n})+3Im, n} = >
ng—J@ném-qé)+3mhn§:ﬁﬂii%ﬂiglAnz
ng—JGnﬁny—@)+3mhn§:£@:l%@:22AB3
we have
A ”1("12 —3m12) 3m1"12
m—=1)(m-2
H =% Ay nz(ng —3m§) 3m2n§
Asz n3(n32 —3m32) 3m3n32
| ) F Ay 3’"1"12
“4.7) J :% my Ay, 3myn;
m; Azz3 3m3n32
(- Dm—2) ml3 nl(nlz—3m12) A
m—1)(m—
I:——z?——mgnﬂﬁ—%@ Ay
mg n3(n32 —3m32) Azz3

where my, mp, ms, ny, Ny, N3 and Alll’ A222, A333 are given by (45)' and (44), and
ml3 nl(n12—3m12) 3’"1"12
Z= mg nz(n§—3m§) 3m2n§ .
m; n3(n32 —3m32) 3m3n32
Proposition 2: The main scalars H, J, I of a three dimensional Finsler space with m-th
root metric are given by (4.7).
Special cases:
1) Cubic metric: When we treat with cubic metric (m = 3) then equation (4.7) can be

rewritten as:

2 2 2 3 2
Ay Ml =3mp) 3myng moA,, 3mn
H=—|A (ny =3m3) 3myn; J=—|m Ay, 3mn;
A Na Iy = ony M|, =7 My foxp M|,
304 2
m; 4333 3mzng

2 2 2
Az ny(n; —3m3) 3mym

(4.8)

3 2 2
my  n(ny —3my) An

1
I=—|m3 n,(n3=3m;) Ayl

m; n3(n32 —3m32) Azz3

Proposition 3: The main scalars H, J, I of a three dimensional Finsler space with

cubic metric are given by (4.8).
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2) Quartic metric: When we treat with quartic metric (m = 4) then equation (4.7) can
be rewritten as

Ay ny(nf =3m?)  3mnf
H :% Ayyy ny(n3 —3m3) 3myn)
Asz3 n3(n32 —3m32) 3m3n32
mo Ay 3myng
4.9) J==|m} Ay, 3myni
mg Az33 3m5n32

3 2 2

my o n(np =3mp) A,
_ 3 2 2
I=—|my n,(nj=3my) Ay,

m3  ny(ni—3mi) A

Proposition 4: The main scalars H, J, I of a three dimensional Finsler space with
quartic metric are given by (4.9).

5. Result reducible to two-dimensional space

If we put cy4, cs, Cs, C7, Cg, Co Zero and cg, Cy, Cy, C3 are function of (x, y) then (3.1)
reduces to
(5.1) L =coi3+3c, 52y +3c% y2+¢35°,
and thirty Christoffel symbols of third order reduces to only eight symbols such as
{111, 1} = ¢o1/2, {111, 2} = 3y - cn)/4, {112, 1} = (cor + c11)/4,
{112,2} :C21/2, {122, 1}2012/2, {122,2} :(022+C31)/4,
{222, 1} = (Bcan - c3)ld,  {222,2} =c30/2.
We put

a a
H=Ldeta;=0*|" "

ay ayp|
then the equation (3.2) reduces to

1 1
ayG' + a,G* = i {000, 1}, a2,G' + anG’ = i {000, 2}.

Solving this equation, we get

1 . . 1
(3H)(2G') = (S eileo-3en) + cacor} & %= (3cicar - 2¢00 - C3c1) &7 - 3] S Ciean+ca)
1 . .
- Co(Crp—cyy) - 503(002 +ci)}x : y B (ciC3n+ 2¢oC31 - 3c5€12) * y 3 {cacan

1
+ 503(031 -3cn)} ¢
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2 1 .4 .3 1
(3H)(2G") =-{ ECO(Coz - 3ci1) + ¢iCo1} & T+ (BCCar - 2C1Con - €aCo1) X7y + 3 500(022"' C31)
1 .2, . .3
-Ci(C12—¢21) '502(0024‘ ci)} £ 5 +(cocxn+ 2¢1C31- 3¢C12)) Xy - {ciCa

1
+ 502(031 -3cn)} ¢

These are required Berwald connection coefficients for a two dimensional Finsler space”.

Again, if we put cg, Ccg, €14 as zero and c,, C,, ¢4 are function of (x, y) only then, (3.4)
reduces to

(5.2) L'=cox*+6c,x% 5 +cyy”

and forty five Christoffel symbols reduces to the following ten symbols

(1111, 1} = ci/2, (1111, 2} = - /6, (1112, 1} = c/6,
(1112,2} = ¢y /2, (1122, 1} = cy/6, {1122, 2} = cyl6,
(1222, 1} = cp/2, (1222, 2} = cy//6, (2222, 1} = - cy /6,

{2222,2} = c40/2,
and a11=co)'c2+c2y'2, a12=2025c v, 022=C2X2+C4y2
Thus, we obtain the equations of geodesic as follows®

(G + e+ ey + () +C—g2<x)3y+c—;'<x>2<y‘>2 Hep(DOY ~ T8 (3)* =0

(20,55 + (3 (0% + ¢, ())F =2 (D) + ¢, (2§ +%o‘c>2<y'>2 + %(fc)(y'f +%<y‘>4 =0

12
Next Putting A3, Ajz, As; zero in (4.2a), then we have
(5.3) (A, A, Ap) =X ()’2, -Xy, xz)

where X is a scalar. Putting A3, A123, A133, A233, Az, Aszsz Zero in (4.2b), we get
(5.4) (Ar11, A1z, A, Ax) = 2Y( )’3, 'x)’z, Xzy, 'X3)

where Y is a scalar. Since n; does not appear in two-dimensional case and m; vanishes; from
equation (4.5), we have (m;, m,) =k (-y, x).

Thus, from equations (4.1) and (5.3), we have

(5.5) (m-1) X =k*

and in equation (4.6), J and / vanish. Therefore LCy;, = Hm,m ;my
Further, in view of (4.1) and (5.4), we have

(5.6) -HK® = (m-1)(m-2)Y.

Hence from (5.5) and (5.6), we have

o m=2
m-Xx> "

This is the main scalar of cubic metric in two-dimensional Finsler space”.
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