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Abstract: In the present paper we obtain scalar curvature R of Two-dimensional
Finsler space with cubic metric. Some special cubic metrics have been considered
and explicit expression for scalar curvature R has been found. Variation of scalar
curvature has been shown in various figures for x and y.
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1. Preliminaries

There are few papers on cubic Finsler spaces where certain properties'® have been
studied. There are various papers on the geometry of spaces with a cubic metric as a
generalization of Euclidean or Riemannian geometry. In 1995 M. Matsumoto and K.
Okubo7, introduced the Christoffel symbols of m-th order, they obtained connection
coefficients of Berwald and the differential equations of geodesic. They specially treated
the two-dimensional Finsler space with cubic and quartic metrics and obtained the main
scalar.

In Two-dimensional Finsler space F  the main scalar I and curvature R have important
roles. The purpose of the present paper is to obtain scalar curvature R of Two-dimensional
Finsler space with cubic metric. Some special cubic metrics have been considered and
explicit expression for scalar curvature R has been found as given in equations (3.2), (3.3).
Variation of scalar curvature for x and y has been plotted in the figure.

The cubic root Finsler metric L(x, y) of an n-dimensional differentiable manifold M" is
defined as

(1.1) L (x,y) =ay (x)y'y’y*
where a;; (x) are components of a symmetric tensor field of (0, 3)-type, depending on the
position x alone, and a Finsler space with this metric is called the cubic Finsler space.

Let us define aj; (x,y) and g;(x,y) by
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(1.2) La;(x)=ay(x)y"  and L a(x)=ayx)y'y" .

Then the normalized supporting element /; = 3iL the angular metric tensor /; = Lai 0 L

and the fundamental tensor g; =la- 0 I* =h; +11; and the C-tensor C;; =13-3 0,2
iy Yt UM ik = g %

are respectively given by the equations

(1.3) a) [ ,=a;, b) hij = 2(%' —al.aj) s c) 8; = 2aii -a,a;

d) LCy =(ay —aja; —aya; —a;a, +2a,a;a;)

Let us call a;(x, y) the basic tensor because this played an important role'. The metric

L is called regular, if the basic tensor has the non-vanishing determinant. Throughout our
theories of cubic root metrics, we would suppose the regularity of the metrics.

By a” (x, y) we denote the reciprocal of a;i(x,y) . Then the reciprocal g’j (x, y) of
;i (x,y) s given as
28"=4d"+a a/ and I'=d,

where a;a'=1, ai:aijaj, li=yi/L=g’jlj.

2. Scalar Curvature of Two-dimensional cubic Finsler space

In two-dimensional Finsler space the Berwald frame (/;,m;) has important role®. Any
tensor field can be expressed in terms of this frame.

We are concerned with a cubic Finsler space equipped with a Berwald connection BI"
= (G/,s G' 0) where, G =0,G' and G;=9,G,. G;=g;G' =(y'9;0,L’ —8jL2)/4,
aj represent partial derivative with respect to y' and o, represent partial derivative with

respect to x'.

There are five torsion tensors and three curvature tensors in the theory of Finsler space
equipped with any Finsler connection. If we are concerned with Berwald connection BI" the

only non-vanishing torsion tensor is (v)-h torsion tensor R;k given by
(2.1) Ry = SkG"i —SjG,’(
where 8, =9, —GJ0,.
The (v)-h torsion tensor R;-k in two-dimensional Finsler space8 may be written as
(2.2) Ry = LRm'(I;my —lym;),

where R is the h-scalar curvature and m' = g"m .
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The cubic metric in two-dimensional Finsler space is given by (1.1) with i, j, k =1, 2. If
we put (ajy1, @i, @i, G0) = (Cp, €1, ¢, ¢3) and (x',x*) =(x,y), (»',y*) = (7). Then,
(1.1) may be written as

L =cox3+3c, X2y +3co% y2+c3y°

The Christoffel symbols of third order for a cubic Finsler space has been defined by M.
Matsumoto’, and is given by

.. 1
(2.3) {ijk, R} :Z(aiajkh +0 g, + 0, Gy, — 0,y )
. dc, de, . . :
By putting . =c, » N =c,,a=0,1,2,3, we get eight Christoffel symbols of third
X y

order as follows:

{111, 1} = coi/2, {111, 2} = Bcy-co)/4, {112, 1} = (coatc11)/4,

{112, 2} :C21/2 {122, 1}:C12/2, {122, 2} :(C22+C31)/4,

{222, 1} = (Bep-cap)/d,  {222,2) =c3p/2
If we put H= L*det aij, then from (2.3) and (1.2), we have
(2.4) H= A(¥)* +Biy+C(3)*,
where A=cc, —clz, B =cyc3 — ¢y, C=c; —c%.
The value of G' s G?in two dimensional cubic Finsler space are the solutions of linear

equation a,,G" = ﬁ{jkh,i}y*"yk y" and are given by’

2.5) GH)2G") = a(D)" +b(2)* y+c(0)* () +d(D()’ +e(3)"

where a :% ci(Coa- 3¢11) + €1, b =-(3ciCa1 - 2¢5C0n - C3Co1),
c=-3{ % ci(cy+ c31) - Ca(Cia—Coy) - 503(c02+ ci},

1
d = - (ciC32+ 2¢,5¢3; - 3C3C12), e=-{ccp + E cs(es31- 3¢}

and

(2.6) BH)(2G*) = f(0)* +g(X) y+h(0)* (3)* + k(D)) +1()*
1

where f= -{ E co(Coz- 3¢11) + ¢iCor }s g = (3coca - 2¢1Cpn - €Co1),s

1 1
h=3{ E Co(Caz + €31) -C1(Cr2— C21) 'E Cr(Cop+cip)},

1
k = (cocsn + 2¢1C31 - 3¢5C12)), I={cicn+ E c(c31-3¢2))
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In two-dimensional Finsler space, the non-vanishing components of R}k are

only Rll2 = —R;l , R122 =- R221 . We are concerned with Rll2 . From (2.1), we have

1 1 1 1 1 1
.1y R, = oGy —(aG} Gy + 3(?1 G3)- 3G, +(aG_2 Gl + aGP G})
dy ox dy ox ox ay
and from (2.2), we have
Q.2 R!, = LRm' (lm, —Lm,) .

Firstly, we are concerned with equation (2.2)' for the metric (2.3). The equation (1.2)
explicitly may be written as

Lay, =cyx+c,y, Lay, =c¢x+c,y, Lay,, =cy,x+c3y,
ay = cy(0)* +2 59+, (3),  LPay = ¢ (1) +2c,09 + 3 ().
With the help of above equations, the expression (1.3¢c) may be expressed as
Lrgy =5 (0 =26 (2 (9)? + 2(coe5 =)D’ + (26163 =) ()
2.7 L'gyy = coe; (1) = (c10, +¢oe3)(0)* (1) +r0(3)* = L'gy
L'y = 240y =) D) +2(coe3 = 10)(®) (3) = 2635(3) " +¢3 (9
Since I, = g;l’, we have
Ll =g x+g;y
2.8) . .
Ll = gy x+ 85y -
Then, in view of (2.7), equation (2.8) reduces to

Dl =i (%) +cye (D) 3= 261 (1) ()7 +(coe3 —3¢162)(0)° ()

—Q2¢03 — DM +0,05()°
(2.9)
DL, = cyey (%) +(2coc, — P )E)* 3+ (coes —3¢10,)(X) (3)* =263 (1) (7))’

+ 6,63 +3 (3.
The components m' and m; (i =1, 2) of Berwald frame are related with /'and [, by
the relations®

(mtom?) = (<1,.1)

(2.10) \/g
(my,my) =g (=1°,1")
where g = det( 8ij ). In view of (2.10), equation (2.2)' reduces to

(2.11) Rly = LRm' (l,m, —Lym,) = —RL, (I, x +1, )
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where [, and [, are given by (2.9).

Secondly, we are concerned with equation (2.1)". From (2.4), we have

. OH . OH - 0’H
(2.12) H,=—=2A%x+By, H,=—=Bi+2Cy, H. =—""-24
Tk y 2 % y 11 a(x)z
9’H . 2H .
=—5=2C, =——--=B=H,,
22 8()’7)2 12 %3y 21
oH . . . oH . o .
H, =g=A1(x)2 +B(H)(N+C (), H, =g=A2<x)2 + B,y ()(9) +C (3)%,
oH . . oH . )
Hy, =—L=2A,(X)+B,(y), H, =—2=B,(x)+2C,(y)
dy ox
0A oB oC 0A oB aC
where A=o0e Bi=go. G=go. Aol Bi=gn.and G =on

Since Gj- = 3jGi and Gj-k = 3j3kGi , from (2.5), we have

6HG, = 4a(x)’ +3b(x)* y+2c(x)(3)* +d(y)’ —6H,G"

6HG,, =12a(%)* +6b(x)y+2¢(y)* —6H,,G' —12H,G|

13 6HG, = 3b(x)* +4c(x)y+3d(y)* —6H,,G' —6H,G ,—6H,G }
e 6HG) = b(%)* +2c(x)* y+3d (X)(y)* +4e(y)’ —6H,G'

GHGY, = 3b(x)* +4c(3)§ +3d(3)> —6H,G' —6H,G~6H,G }

6HG), = 2¢(%)* +6d(x)y+12e(3)* —6H,G' —~12H,G ,
Also from (2.6), we have

6HG] = 4f (%)’ +3g(x)* y+2h()(9)* +k(3)’ —6H,G*
(2.14)

6HG; = g(x)* +2h(%)* y +3k(¥)(9)* +41(y)’ —6H,G*
From (2.13), we have

1
6Haa%=4a2()k)3 +3b, ()2 () + 26, (D) +y (3)°

—6H,,G' —=6H,D, —6H,G|
(2.15
0G,

6H S b= by (%) +2¢,(0)* () +3d, (X)(3)* +4e, ()’
y

~6H,,G' —6H,D, —6H,G)
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where a, =0,a, b,=0,b, ¢, =0,c, dy=0,d, D,=9,G', b =9b, d =9d,
e, =de, D =9,G".
In view of equations (2.4), (2.12), (2.13), (2.14), (2.15), the equation (2.1)' reduces to

X

(2.16) R, =—2—
2 36H2

where

X ={8fc—3bg +24a,A—6b A} (%)’ +{3b> —8bc+2gc+24 fd —6bh+24a,B+18b,A—

6b, B —12¢, A}(%)* (9) + {2bc — 24ad — 4he +15gd + 48 fe—9bk +24a,C +18b,B+12¢, A
~6,C —12¢,B—18d, A} (%)’ ($)* + (6hd +36 ge — 6bd —10kc —12bl — 48ae + 6d, A +12¢,B
+18b,C —12¢,C —18d,B —24¢, A} ()* (3) +{24eh —2cd — 3kd — 24be —16¢l +12¢,C +6d, B
~18d,C —24¢, B} (2)(y)* +{3d* +12kl —16ce —12dI + 6d,C —24¢,C}(y)’ —{24a(H,,G" +
H,G| + H,G))+24f(HG' +2H,G))—6b(H,,G' +2H,G})~6g(H,,G' + H,G}
+H,G)} (%)’ —{18b(H,,G' + H,G| + H,G)) +18g(H,G' +2H,G))—12¢(H,,G" +
2H,G!)~12h(H,G" + H\Gy + H,G)}(%)* (3) —{12¢(H,,G' + H,G| + H,G)) +12h(H ,
G'+2H,G))—18d(H,,G" +2H,G})—18k(H,,G' + H,G} + H,G}) }(x)(y)* — {6d (H ,,G"
+H,G} + H,G)) +6k(H»,G' +2H,Gy)—24e(H,,G' +2H,G}) - 241(H,,G" + H,G} +
H,G))(9)* +{18bH,G" +12cH,G* —72aH,G"' —~18bH,G* +36A(H,,G' — H,G' + H,D,
+H,G| —H,D, — H,Gy)}(x)* —{24cH,G" +36dH,G* —36bH,G' —24cH,G* +36B(H,,G"
~H,,G' +H,D, + H,G} — H,D, — H,G3)}(x)(3) — {18dH,G" +72¢H,G* ——24cH ,G"
~18dH,G* +36C(H,,G' — H,,G"' + H,D, + H,G| — H,D, — H,G))}()* +36(H,,G"
+H,G| + H,Gy)(H,G' — H,G*)+36H,G*(H,,G" +2H,G,)-36H,G' (H,,G' +2H,G/)

Now in view of (2.11) and (2.16), we have
X

(2.17) R=-
36H 21, (I x+15 y)
where ll and 12 are given by (2.9).

Theorem 1: The (h)-scalar curvature R of a two-dimensional Finsler space with a
cubic metric is given by (2.17).
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The expression of R given in (2.17) is very lengthy. Due to this fact it will be very
difficult to study any more properties of two-dimensional Finsler spaces with cubic metric.
Therefore in the next article we shall consider special cases of cubic Finsler metric.

3. Two-dimensional special cubic Finsler metric
Now, we consider symmetric metric
L=cy(i*+y)+3ci(x%y + % y))
where we putcyp=c;, ¢;=0Co.

In order to simplify it a bit more, we take
Casel: ¢,=0, L’=cy(x’+y?, H=cliy

Putting these values in equation (2.17), we get

—[2{co1C0n = 20€o1 }E +{13¢3, =12 o Coy }

48
G- 2 3 5 3
) O, 2 2
+{13C31 —12¢ o1y }=——+{2cpiC0p —4coCoin} 5 H o e
x Y @t @
ac dc
where aib =Cupl» a;‘b =Cugp2 » a=0,1,2,3and b=1,2.
Further
(A) For ¢y, =x, the metric L is given by L =x((x)? +(j1)3) and the (h)-scalar
curvature R from (3.1) reduces to
3
(3.2) R} =R (= LN
(48)" x
-\3
where t=%.
(x)

Theorem 2: The (h)-scalar curvature R of a two-dimensional Finsler space with cubic
metric I’ = x((x)* + (j/)3) is given by (3.2).

In particular, at x = 1, we consider the indicatrix of the metric r =)c(()'c)3 +( y')3).
Fig.1 shows the indicatrix curve in the orthonormal co-ordinates (x;, y;) , which is obtained

from (x,y) by —45° rotation. Indicatrix curve is symmetric with respect to y -axis and X -

axis is an asymptote to the indicatrix. Variation of indicatrix as a point P moves along the
indicatrix is shown in Fig. 2 (M. Matsumoto and K. Okubo’, page-102, Fig. 2). Further,
variation of scalar curvature which is given by (3.2) is shown in Fig. 3 at x = 1. As a point P
moves A— B — C — D along the indicatrix curve as shown in Fig. 1, the variation of
scalar curvature has also been shown in Fig. 3 with the point P (A —- B —- C — D).
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Analytical analysis is given below:

<13
t=—1,:%=—1,: y=—x,= x+y=0,=y =0, which corresponds to A.
(x
t=0,=> ()'))3 :0,:)7:?, which corresponds to B.
-3
tzl,:%zl,: y=x,= x—y=0,=x =0, which corresponds to C.
(x)

t — o0,= (£)=0,= y = —x , which corresponds to D.

From the equation (3.2) it is obvious that R (#)<0 when -13<t<-1 and
R.(t)=0 fort =-13 and t = -1.R (1) >0 when 7<-13 or t>-1. R (f) > when

t —too. R (0)= 0‘01899 and R, (0), =— 0‘0?9 at t=—4.
X
. oo )’
In Fig. 2, t == and in Fig. 3, r=——.
X (x)

(B): For ¢, =y, the metric L becomes L= y(()'c)3 +( y')3) and the (h)-scalar curvature R
from (3.1) reduces to

Eand 13y

(3.3) RP=R ()=-1—1L

¥ (48)° ys

Theorem 3: The (h)-scalar curvature R of a two-dimensional Finsler space with cubic
metric ¥ = y(()'c)3 + (y)3) is given by (3.3).

In particular, at y = 1, we consider the indicatrix of the metric L= y(()’c)3 +( )’))3) .

Fig. 1 shows the indicatrix curve in the orthonormal co-ordinates (x;, i') , which is obtained

from (x,y)by -45° rotation. Variation of scalar curvature which is given by (3.3), is shown

in Fig. 4 for y = 1 graphically. As a point P moves A - B — C — D along the indicatrix
curve as shown in Fig. 1. The variation of scalar curvature has also been shown in Fig. 4
with the point P (A — B — C — D). Analytical analysis is given below:

-\3
t=—1,3%=—1,3 y=—x,= x+y=0,=y =0, which corresponds to A.
(x
t=0,> ()'))3 =0,=>x= ;,:> R, (t) — co, which corresponds to B.
-3
t= 1,:%=1,3 y=x,=x—y=0,=x =0, which corresponds to C.
X)

t > o0,= (x)=0,= } =—x , which corresponds to D.
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From the equation (3.3) it is obvious that R,(f)<0 when -13< 1/ t<—-1 and

Ry(t)z() for I/t=-13and t =-1.R (#) >0 when l<—l3 or t>-1. R, (t) = o when
) : )

l—>iz><>.

t
R, (1)

A

Fig. 4

(C):  For ¢,=constant, the metric L becomes, [’ = constant (()'c)3 +( j/)3) , and the (h)-
scalar curvature R from (3.1), reduces to R = 0. Thus
Theorem 4: The (h)-scalar curvature R of a two-dimensional Finsler space with cubic

metric I’ = constant (x)° + (y)3) vanishes.

Remark: When ¢, is a constant, ¢, is zero and hence the expression for R in (3.1)
vanishes. On the other hand when ¢, is calculated for x = 1 it comes out to be one and the

value of scalar curvature R is different from zero. This case is different from the case when
in the metric ¢, is taken as a constant.

Case2:- ¢, =0, L =3¢ ((&)’()+@()), H=— (X’ +iy+()),
Putting these values in equation (2.17) we get
Xl

(3.4) R=——p ™l
36H2L, (It +1,7)

where
X, = (18¢] (2M, = M)}(0)” +{18¢ (cfy = 5M +2M)}(0)* (7) +{9¢] Bcfy —12M,
—10M)}(2)*(3)? ={18¢] (4cfy =3M 5 +2M)}(0)* (3)° = {18¢] (2 =3M )} (H)(3)'*
(9¢f (Bcf, —2M )} ()’ —{24a(H,,G' + H,G! + H,Gy)—6b(H,,G" +2H,G})} (%)’
~{18b(H,,G" + H,G| + H,G3)~12¢(H,,G" +2H,G})~12h(H,,G" + H,G/ +

H,G)}(0)*(3) - {12¢(Hy,G" + H,G| + H\Gy) +12h(H,G' +2H,G,)—18d(H,,G"
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2H,G))~18k(H,G' + H,G) + H,G)}(0)(3)” ={6d(H,,G' + H,G| + H,G)) +
6k(H,G' +2H,G))—241(H,G' + H,G) + H,G)}(y)’ +{18bH,G" +12cH,G*
~72aH,G' —18bH,G* +36A(H,,G' — H,,G' + H,D, + H,G| — H,D, — H,G})}(%)*
~{24cH,G" +36dH,G* —36bH,G" —24cH,G* +36B(H,,G' —H,G' + H,D,
+H,G, — H,D, — H,G)) }(x)(9) —{18dH,G" +72¢H,G* —-24cH,G" —18dH,G*
+36C(H,,G' — H,,G' + H,D, + H,G| — H,D, — H,G))}(y)* +36(H,G" + H,G!
+H,Gy)(H,G' — H,G*)+36H,G*(H,,G' +2H,G,)-36H,G' (H,,G' +2H,G/)

Ll =26 (1)’ ()" =3¢ (07 () +¢ (3"

Ll =~ () (9) =3¢} (0’ () =} () (3

(3H)(2G") = —%clc“[(xr‘ +200° (1) + (0 (9)* =2()(7)°] and

3 . . . .
(BH)(2G*)= —Eclc“[(xf(y)2 +20() + (M),
2a=b=2c=-d=-3cc;;, =2h=k=2[,

M, =0¢icyy, M, =0,¢¢y; -

Theorem 5: The (h)-scalar curvature R of a two-dimensional Finsler space with cubic
metric I’ =3c¢,((X)*(3)+(X)(y)?) is given by (3.4).

References

1. M. Matsumoto and S. Numata, On Finsler spaces with a cubic metric, Tensor, N. S., 33
(1979).

2. V. K. Kropina, Projective two-dimensional Finsler spaces with special metric, (Russian),
Trudy sem. Vektor. Tenzor. Anal., 11 (1962) 277-292.

3. V. V. Wagner, Two-dimensional space with the metric defined by a cubic differential
form, (Russian and English), Abh. Tschern, Staatuniv, Saratow, 1 (1938) 29-40.

4. V. V. Wagner, On generalized Berwald spaces, C. R. Dokl. Acad. Sci. URSS, N.S., 39
(1943) 3-5.

5. J. M. Wegener, Untersuchung der zwei- und dreidimensionalen Finslershen Raume mit
der Grundform I = a,, &' i* &', Akad. Wetensch Proc., 38 (1935) 949-955.

J. M. Wegener, Untersuchung uber Finslersche Raume, Lotos Prag, 84 (1936) 4-7.

7. M. Matsumoto and K. Okubo, Theory of Finsler spaces with m-th Root metric:
Connections and Main Scalars, Tensor, N.S., 56 (1995) 93-104.

8. M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha
Press, Saikawa, Otsu, Japan, 1986.



