GSĜ-Homeomorphism and ĜGS-Homeomorphism in Topological Spaces

Shikha Agarwal and C. K. Goel

Department of Mathematics, C.C.S. University, Meerut (U.P.). E-mail : manojshikha@rediffmail.com

Manoj Garg

Department of Mathematics, Nehru (P.G.) College, Chhibramau, Kannauj (U.P.) E-mail : garg_manoj1972@yahoo.co.in

(Received April 05, 2008)

Abstract: In the present paper we introduce two new types of mappings called $gs\hat{g}$ -homeomorphism and $\hat{g}gs$ -homeomorphism and then show that one of these mappings has a group structure. Further we investigate some properties of these two homeomorphisms.

Keywords: Homeomorphism; ggs -homeomorphism; gsg -homeomorphism.

2000 Mathematics Subject Classification No.: 54C08 and 54C10.

1. Introduction

Levine¹ generalized the concept of closed sets to generalized closed sets in 1970. Bhattacharya and Lahiri² generalized the concept of closed sets to semi-generalized closed sets with the help of semi-open sets in 1987 and obtained various topological properties. Arya and Nour³ defined generalized semi-open sets with the help of semi-openness and used them to obtain some characterizations of s-normal spaces in 1990. In 1995, Devi, Balachandran and Maki⁴ defined two new classes of maps called semi-generalized homeomorphisms and generalized semi-homeomorphisms. They also defined two new classes of maps called sgc-homeomorphisms and gsc-homeomorphisms. In 2007, Ahmed and Narli⁵ defined two new classes of maps called gsg-homeomorphisms and sgs-homeomorphisms in 2007. Garg et al.⁷ again in 2007, introduced two new classes of maps called sg ψ -homeomorphisms and ψ gs-homeomorphisms in 2007. Garg et al.⁹ again in 2007, introduced two new classes of maps called sg ψ -homeomorphisms and ψ gs-homeomorphisms in 2007. Garg et al.⁹ again in 2007, introduced two new classes of maps called sg ψ -homeomorphisms and ψ gs-homeomorphisms and ψ gs-homeomorphisms in 2007. Garg et al.⁹ again in 2007, introduced two new classes of maps called sg ψ -homeomorphisms and ψ gs-homeomorphisms and ψ gs-homeomorphisms in 2007. Garg et al.⁹ again in 2007, introduced two new classes of maps called sg ψ -homeomorphisms and ψ gs-homeomorphisms and ψ gs-homeomorphisms in 2007. Garg et al.⁹ again in 2007, introduced two new classes of maps called sg ψ -homeomorphisms and ψ gs-homeomorphisms and ψ g

Throughout the present paper, (X, τ) and (Y, σ) denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a topological space (X, τ) the cl(A), int(A) and A^C denote the closure of A, the interior of A and the complement of A in X respectively.

2. Preliminaries

In this section we recall the following definitions.

Definition 2.1: A subset A of a topological space (X, τ) is called semi-open⁸ (resp. semi-closed) if $A \subseteq cl(int(A))$ (resp. $int(cl(A)) \subseteq A$). Every closed (resp. open) set is semi-closed (resp. semi-open).

Definition 2.2: A subset A of a topological space (X, τ) is called semi-generalized closed² (briefly sg-closed) if scl(A) \subseteq U whenever A \subseteq U and U is semi-open. The complement of sg-closed set is called sg-open set. Every semi-closed set is sg-closed set. The family of all sg-closed sets of any topological space (X, τ) is denoted by sgc (X, τ) .

Definition 2.3: A subset A of a topological space (X, τ) is called generalized semi closed³ (briefly gs-closed) if scl(A) \subseteq U whenever A \subseteq U and U is open. The complement of gs-closed set is called gs-open set. Every closed (semi-closed, g-closed and sg-closed) set is gs-closed set. The family of all gs-closed sets of any topological space (X, τ) is denoted by gsc (X, τ) .

Definition 2.4: A subset A of a topological space (X, τ) is called ψ -closed⁹ if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open. The complement of ψ -closed set is called ψ -open set. Every closed (semi-closed) set is ψ -closed set and every ψ -closed set is sg-closed (gs-closed) set. The family of all ψ -closed sets of any topological space (X, τ) is denoted by $\psi c (X, \tau)$.

Definition 2.5: A subset A of a topological space (X, τ) is called \hat{g} -closed¹⁰ if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open. The complement of \hat{g} -closed set is called \hat{g} -open set. Every closed set is \hat{g} -closed set and every \hat{g} -closed set is ψ -closed (sg-closed, gs-closed) set. The family of all \hat{g} -closed sets of any topological space (X, τ) is denoted by $\hat{g} c (X, \tau)$.

Definition 2.6: A map $f : (X, \tau) \to (Y, \sigma)$ is called semi-closed map⁸ (resp. sg-closed map¹¹, gs-closed map¹¹, ψ -closed map¹², \hat{g} -closed map¹³) if the image of each closed set in (X, τ) is semi-closed set (resp. sg-closed set, gs-closed set, ψ -closed set, \hat{g} -closed set) in (Y, σ) . Every closed map is semi-closed map. Every semi-closed map is ψ -closed map. Every ψ -closed map is sg-closed map, every sg-closed map is gs-closed map and every \hat{g} -closed map is ψ -closed map (sg-closed map, gs-closed map, g-closed map).

Definition 2.7: A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is called \hat{g} -continuous¹³ (resp. ψ continuous⁹, g-continuous¹⁴, gs-continuous⁴, ψ -irresolute⁹, sg-irresolute¹⁵, gs-irresolute⁴, gsg-irresolute⁵, sgs-irresolute⁵, gs ψ -irresolute⁶, ψ gs-irresolute⁶, sg ψ -irresolute⁷, ψ sgirresolute⁷, \hat{g} -irresolute¹³) if the inverse image of every closed (resp. closed, closed, closed, ψ -closed, sg-closed, gs-closed, gs-closed, sg-closed, ψ -closed, sg-closed, ψ -closed, sg-closed, set in (Y, σ) is \hat{g} -closed (resp. ψ -closed, sg-closed, ψ -closed, sg-closed, sg-closed, gs-closed, gs-closed, ψ -closed, gs-closed, ψ -closed, sg-closed, sg-closed, sg-closed, \hat{g} -closed, sg-closed, \hat{g} -closed, sg-closed, sg-closed, sg-closed, \hat{g} -closed, sg-closed, \hat{g} -closed, sg-closed, sg-closed, sg-closed, \hat{g} -closed, sg-closed, \hat{g} -closed, sg-closed, \hat{g} closed) set in (X, τ).

Definition 2.8: A bijective map $f : (X, \tau) \rightarrow (Y, \sigma)$ is called

(i) semi-homeomorphism (B)⁵ (briefly s.h. (B)) if f is continuous and semi-open map.

- (ii) semi-homeomorphism (C.H.)¹⁶ (briefly s.h. (C.H.)) if f is irresolute, presemiopen (i.e. f(U) is semi-open for every semi-open set U of (X, τ)).
- (iii) ψ -homeomorphism¹² if f is both ψ -continuous and ψ -open map
- (iv) \hat{g} -homeomorphism¹³ if f is both \hat{g} -continuous and \hat{g} -open map
- (v) semi-generalized homeomorphism⁴ (briefly sg-homeomorphism) if f is both sgcontinuous and sg-open.
- (vi) generalized semi-homeomorphism⁴ (briefly gs-homeomorphism) if f is both gscontinuous and gs-open.
- (vii) sgc-homeomorphism⁴ (resp. gsc-homeomorphism⁴, ψ^* -homeomorphism¹², \hat{g} c-homeomorphism¹³, gsg-homeomorphism⁵, sgs-homeomorphism⁵, gs ψ -homeomorphism⁶, ψ gs-homeomorphism⁶, sg ψ -homeomorphism⁷, ψ sg-homeomorphism⁷) if *f* and *f*⁻¹ are sg-irresolute (resp. gs-irresolute, ψ -irresolute, \hat{g} -irresolute, gsg-irresolute, sgs-irresolute, gs ψ -irresolute, ψ gs-irresolute, sg ψ -irresolute, ψ gs-irresolute, sg ψ -irresolute, ψ gs-irresolute, sg ψ -irresolute, ψ gs-irresolute).

Definition 2.9: A space (X, τ) is called $T_{1/2}$ -space¹ (resp. T_b -space¹¹, \hat{T}_b -space¹³) if every g-closed set (resp. gs-closed set, gs-closed set) is closed set (resp. closed set, \hat{g} -closed set).

Proposition 2.1: In a $T_{1/2}$ -space every gs-closed set is semi-closed set ¹¹.

3. GSĜ -Homeomorphism

In this section we introduce $gs\hat{g}$ -homeomorphisms and then investigate the group structure of the set of all $gs\hat{g}$ -homeomorphisms.

Definition 3.1: A map $f: (X, \tau) \to (Y, \sigma)$ is called a gsĝ-irresolute map if the set $f^{-1}(A)$ is \hat{g} -closed in (X, τ) for every gs-closed set A of (Y, σ) .

Definition 3.2: A bijection $f: (X, \tau) \to (Y, \sigma)$ is called a gs \hat{g} -homeomorphism if the function *f* and the inverse function f^{-1} are both gs \hat{g} -irresolute maps. If there exists a gs \hat{g} - homeomorphism from X to Y, then the spaces (X, τ) and (Y, σ) are called gs \hat{g} - homeomorphic. The family of all gs \hat{g} -homeomorphisms of any topological space (X, τ) is denoted by gs \hat{g} h(X, τ).

Remark 3.1: The following examples show that the concepts of homeomorphism and gsĝ -homeomorphism are independent of each other.

Example 3.1: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Define $f : (X, \tau) \rightarrow (X, \tau)$ as identity mapping then f is a homeomorphism but not a gs \hat{g} -homeomorphism.

Example 3.2: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, Y\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ as identity mapping, then f is a gs \hat{g} -homeomorphism but not homeomorphism.

Proposition 3.1: Every gs \hat{g} -homeomorphism is (i) sgc-homeomorphism (ii) sgshomeomorphism (iii) gsg-homeomorphism (iv) gsc-homeomorphism (v) sg ψ homeomorphism (iv) ψ sg-homeomorphism (vii) gs ψ -homeomorphism (viii) ψ gshomeomorphism (ix) ψ *-homeomorphism (x) \hat{g} c- homeomorphism.

The converse of the above proposition is not true. It can be seen from the following examples.

Example 3.3: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by identity mapping then f is sgc-homeomorphism but not gs \hat{g} -homeomorphism.

Example 3.4: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by identity mapping then *f* is sgs-homeomorphism but not gs \hat{g} - homeomorphism.

Example 3.5: Let X = {a, b, c} and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by identity mapping then f is gsg-homeomorphism but not gs \hat{g} -homeomorphism, for f and f^{-1} are not gs \hat{g} -irresolute maps.

Example 3.6: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Y\}$. Define *f*: $(X, \tau) \rightarrow (Y, \sigma)$ by identity mapping then *f* is gsc-homeomorphism but not gs \hat{g} -homeomorphism.

Example 3.7: In example 3.3, map f is sg ψ -homeomorphism but not gs \hat{g} -homeomorphism.

Example 3.8: Let $X = Y = \{a, b, c\}, \tau = \{\phi, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by identity mapping then f is ψ sg-homeomorphism but not $gs\hat{g}$ -homeomorphism.

Example 3.9: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Define $f : (X, \tau) \rightarrow (X, \tau)$ by identity mapping then *f* is gs ψ -homeomorphism but not gs \hat{g} -homeomorphism.

Example 3.10: In example 3.6, map f is ψ gs-homeomorphism but not gs \hat{g} -homeomorphism.

Example 3.11: In example 3.3, map f is ψ *-homeomorphism but not $gs\hat{g}$ -homeomorphism.

Example 3.12: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a, c\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by identity mapping then f is \hat{g} c-homeomorphism but not gs \hat{g} -homeomorphism.

Proposition 3.2: Every gsg (sgs)-homeomorphism from \hat{T}_b -space onto itself is gs \hat{g} -homeomorphism.

Proposition 3.3: If $f : (X, \tau) \to (Y, \sigma)$ is $gs\hat{g}$ -homeomorphism then every gsc ($\hat{g}c$)-homeomorphism from X to Y is $\hat{g}c$ (gsc)-homeomorphism.

Proof : Straight forward.

Theorem 3.1: If $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ are $gs\hat{g}$ -homeomorphisms then their composition $gof: (X, \tau) \to (Z, \eta)$ is also $gs\hat{g}$ -homeomorphism.

Theorem 3.2: If $gs \hat{g} h(X, \tau)$ is non-empty then the set $gs \hat{g} h(X, \tau)$ is a group under the composition of maps.

Proof: Define a binary operation $*: gs \hat{g} h(X, \tau) \times gs \hat{g} h(X, \tau) \rightarrow gs \hat{g} h(X, \tau)$ by $f_*g =$ gof for all $f, g \in gs \hat{g} h(X, \tau)$ and o is the usual operation of composition of maps, then by theorem 3.1 gof $\in gs \hat{g} h(X, \tau)$. We know that the composition of maps is associative and the identity element $I: (X, \tau) \rightarrow (X, \tau)$ belonging to $gs \hat{g} h(X, \tau)$ serves as the identity element. If $f \in gs \hat{g} h(X, \tau)$ then $f^{-1} \in gs \hat{g} h(X, \tau)$ such that $fof^{-1} = I = f^{-1}of$ and so inverse exists for each element of $gs \hat{g} h(X, \tau)$. So $(gs \hat{g} h(X, \tau), o)$ is a group under the operation of composition of maps.

Theorem 3.3: If $f: (X, \tau) \to (Y, \sigma)$ be a $gs\hat{g}$ -homeomorphism then f induces an isomorphism from the group $gs\hat{g}h(X, \tau)$ onto the group $gs\hat{g}h(Y, \sigma)$.

Proof: Define θ_f : gs \hat{g} h(X, τ) \rightarrow gs \hat{g} h(Y, σ) by $\theta_f(h) = fohof^{-1}$ for every $h \in$ gs \hat{g} h((X, τ). Then θ_f is a bijection. Further, for all h_1 , $h_2 \in$ gs \hat{g} h (X, τ), θ_f (h_1oh_2) = $fo(h_1oh_2)of^{-1} = (foh_1of^{-1}) \circ (fo h_2of^{-1}) = \theta_f(h_1) \circ \theta_f(h_2)$. So θ_f is a homomorphism and so it is an isomorphism induced by f.

Theorem 3.4: $gs \hat{g}$ -homeomorphism is an equivalence relation in the collection of all topological spaces.

Proof: Reflexivity and symmetry are immediate and transitivity followed from Theorem 3.1.

4. ĜGS -Homeomorphism

In this section we introduce ggs -homeomorphism and investigate its properties.

Definition 4.1: A map $f: (X, \tau) \to (Y, \sigma)$ is called $\hat{g}gs$ -irresolute map if the set $f^{-1}(A)$ is gs-closed in (X, τ) for every \hat{g} -closed set A of (Y, σ) .

Definition 4.2: A bijection $f: (X, \tau) \to (Y, \sigma)$ is called a $\hat{g}gs$ -homeomorphism if the function f and the inverse function f^{-1} are both $\hat{g}gs$ -irresolute maps. If there exists a $\hat{g}gs$ - homeomorphism from X to Y, then the spaces (X, τ) and (Y, σ) are called $\hat{g}gs$ - homeomorphic.

The family of all $\hat{g}gs$ -homeomorphisms of any topological space is denoted by $\hat{g}gs$ h (X, τ).

Proposition 4.1: Every (i) homeomorphism (ii) gc-homeomorphism (iii) sgchomeomorphism (iv) gsc-homeomorphism (v) sgs-homeomorphism (vi) gsghomeomorphism (vii) sg ψ -homeomorphism (viii) ψ sg-homeomorphism (ix) gs ψ homeomorphism (x) ψ gs-homeomorphism (xi) ψ *-homeomorphism (xii) gs \hat{g} homeomorphism (xiii) \hat{g} c-homeomorphism, is \hat{g} gs-homeomorphism. The following examples show that the converse of the above proposition is not true.

Example 4.1: In example 3.2, map f is \hat{g} gs-homeomorphism but not homeomorphism.

Example 4.2: In example 3.4, map f is \hat{g} gs-homeomorphism but not gc-homeomorphism for f^{-1} is not a g-irresolute map.

Example 4.3: In example 3.6, map f is \hat{g} gs-homeomorphism but not sgc-homeomorphism for f is not a sg-irresolute map.

Example 4.4: In example 3.3, map f is \hat{g} gs-homeomorphism but not gsc-homeomorphism for f^{-1} is not a gs-irresolute map.

Example 4.5: Let $X = Y = \{a, b, c,\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by identity mapping then f is \hat{g} gs-homeomorphism but not sgs-homeomorphism .

Example 4.6: In example 3.6, map f is \hat{g} gs-homeomorphism but not gsg-homeomorphism.

Remark 4.1: In example 3.6, map f is \hat{g} gs-homeomorphism but not sg ψ -homeomorphism for f is not a sg ψ -irresolute map.

Example 4.7: Let $X = Y = \{a, b, c, \}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, Y\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by identity mapping then f is \hat{g} gs-homeomorphism but not ψ sg-homeomorphism.

Example 4.8: In example 3.6, map f is \hat{g} gs-homeomorphism but not gs ψ -homeomorphism for f is not a gs ψ -irresolute map.

Example 4.9: In example 4.5, map f is \hat{g} gs-homeomorphism but not ψ gs-homeomorphism for f^{-1} is not a ψ gs-irresolute map.

Example 4.10: In example 3.2, map f is \hat{g} gs-homeomorphism but not ψ^* -homeomorphism for f^{-1} is not a ψ -irresolute map.

Example 4.11: Let $X = Y = \{a, b, c, \}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by identity mapping then f is $\hat{g}gs$ -homeomorphism but not $gs\hat{g}$ -homeomorphism for f is not $gs\hat{g}$ -irresolute map.

Example 4.12: In example 4.11, map f is \hat{g} gs-homeomorphism but not \hat{g} c-homeomorphism for f is not a \hat{g} -irresolute map.

Theorem 4.1: Every $\hat{g}gs$ -homeomorphism from a T_b -space onto itself is a homeomorphism. So $\hat{g}gs$ -homeomorphism is gs-homeomorphism, sgc-homeomorphism, gsc-homeomorphism, gsg-homeomorphism, gsg-homeomorphism, sg ψ -homeomorphism, ψ sg-homeomorphism, ψ sg-homeomorphis

Proof: In view of the fact that in a T_b -space every gs-closed set is closed, the proof is obvious.

Theorem 4.2: Every $\hat{g}gs$ -homeomorphism from a \hat{T}_b -space onto itself is a $gs\hat{g}$ homeomorphism. So $\hat{g}gs$ -homeomorphism is sgc-homeomorphism, ψ^* -homeomorphism, gsg-homeomorphism, sgs-homeomorphism, gsc-homeomorphism, ψ gs-homeomorphism, gs ψ -homeomorphism, ψ sg-homeomorphism, sg ψ -homeomorphism, gc-homeomorphism and \hat{g} c-homeomorphism.

Proof: Since in \hat{T}_{b} -space every gs-closed set is \hat{g} -closed set so proof is obvious.

All the above discussions of Sections 3 and 4 can be summarized by the following diagram.

Where $A \rightarrow B$ (resp. $A \leftrightarrow B$) represents A implies B but not conversely (resp. A and B are independent)

References

- 1. N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo*, **19** (1970) 89-96.
- P. Bhattacharya and B. K. Lahiri, Semi generalized closed sets in topology, *Indian J. Math.*, 29 (1987) 376-382.
- 3. S. P. Arya and N. Nour, Characterizations of s-normal spaces, *Indian J. Pure Applied Math.*, **21(8)** (1990) 717-719.
- R. Devi, K. Balachandran and H. Maki, Semi Generalized homomorphism and generalized semi homomorphism in topological spaces, *Indian J. Pure Appl. Math.*, 26(3) (1995) 271-284.
- 5. Z. O. Ahmet and N. Sarkan, De-composition of homeomorphisms in topological spaces, *International Journal of Math. Sci.*, **1** (2007) 72-75.
- 6. M. Garg, A. Chauhan and S. Agarwal, Generalization of homeomorphism in topological spaces (Communicated).
- 7. M. Garg, A. Chauhan and S. Agarwal, Some new types of homeomorphism in topological spaces (Communicated).
- T. Noiri, A generalization of closed mappings, Atti. Accad. Zaz Lincci. Rend Cl. Sci. Fis Math. Natur., 54(8) (1973) 412-415.

- 9. M.K.R.S. Veera Kumar, Between semi closed sets and semi pre-closed sets, *Rend. Instint. Math. Univ. Trieste (Italy)*, **XXXII** (2000) 25-41.
- 10. M.K.R.S. Veera Kumar, ĝ -closed sets and ĜLC -function, *Indian J. Math.*, **43(2)** (2001) 231-247.
- 11. R. Devi, H. Maki and K. Balachandran, Semi generalized closed maps and generalized semi closed maps, Mem, *Fac. Sci. Kochi Univ. Ser. A. Math.*, **14** (1993) 41-54.
- 12. M. Garg, S. Agarwal and C.K Goel, On ψ -homeomorphism in topological spaces, *Reflection De Era* (Accepted).
- M.K.R.S. Veera Kumar, On ĝ -closed sets in topological spaces, *Bull. of Allahabad Math.* Soc., 18 (2003) 99-112.
- 14. S. G. Crossley and S. K. Hilbebrand, Semi Closure, Texar J. Sci., 22 (1971) 99-112.
- 15. P. Sundaram, H. Maki, K. Balachandran, Semi generalized continuous maps and semi-T1/2 spaces, *Bull. Fukuoka Univ.* Ed. Part-III, **40** (1991) 33-40.
- S. G. Crossley and S. K. Hilbebrand, Semi Topological Properties, *Fund. Math.*, 74 (1972) 233-254.
- 17. N. Biswas, On some mappings in topological spaces, *Bull. Calcutta Math. Soc.*, **61** (1969) 127-135.
- 18. N. Biswas, On characterization of semi continuous function, *Atti. Accad. Zaz Lincci. Rend Cl. Sci. Fis Math. Natur.*, **48(8)** (1970) 399-402.