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Abstract: In the present paper we introduce two new types of mappings called 
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1. Introduction 
 

 Levine
1
 generalized the concept of closed sets to generalized closed sets in 1970. 

Bhattacharya and Lahiri
2
 generalized the concept of closed sets to semi-generalized closed 

sets with the help of semi-open sets in 1987 and obtained various topological properties. 

Arya and Nour
3
 defined generalized semi-open sets with the help of semi-openness and 

used them to obtain some characterizations of s-normal spaces in 1990. In 1995, Devi, 

Balachandran and Maki
4
 defined two new classes of maps called semi-generalized 

homeomorphisms and generalized semi-homeomorphisms. They also defined two new 

classes of maps called sgc-homeomorphisms and gsc-homeomorphisms. In 2007, Ahmed 

and Narli
5
 defined two new classes of maps called gsg-homeomorphisms and sgs-

homeomorphisms. Garg, Chauhan and Agarwal
6
 introduced two new classes of maps 

namely gsψ-homeomorphisms and ψgs-homeomorphisms in 2007. Garg et al.
7
 again in 

2007, introduced two new classes of maps called sgψ-homeomorphisms and ψsg- 

homeomorphisms. In this paper we introduce two new classes of maps called ˆgsg -

homeomorphisms and ĝgs -homeomorphisms and study some of their properties. 

Throughout the present paper, (X, τ) and (Y, σ) denote topological spaces on which no 

separation axioms are assumed unless explicitly stated. For a subset A of a topological 

space (X, τ) the cl(A), int(A) and A
C
 denote the closure of A, the interior of A and the 

complement of A in X respectively. 
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2. Preliminaries 
 

In this section we recall the following definitions.  

Definition 2.1: A subset A of a topological space (X, τ) is called semi-open
8
 (resp. 

semi-closed) if A ⊆ cl(int(A)) (resp. int(cl(A)) ⊆ A). Every closed (resp. open) set is semi-

closed (resp. semi-open). 

Definition 2.2: A subset A of a topological space (X, τ) is called semi-generalized 

closed
2
 (briefly sg-closed) if scl(A) ⊆ U whenever A ⊆ U and U is semi-open. The 

complement of sg-closed set is called sg-open set. Every semi-closed set is sg-closed set. 

The family of all sg-closed sets of any topological space (X, τ) is denoted by sgc (X, τ). 

Definition 2.3: A subset A of a topological space (X, τ) is called generalized semi 

closed
3
 (briefly gs-closed) if scl(A) ⊆ U whenever A ⊆ U and U is open. The complement 

of gs-closed set is called gs-open set. Every closed (semi-closed, g-closed and sg-closed) 

set is gs-closed set. The family of all gs-closed sets of any topological space (X, τ) is 

denoted by gsc (X, τ). 

Definition 2.4: A subset A of a topological space (X, τ) is called ψ-closed
9
 if 

scl(A) ⊆ U whenever A ⊆ U and U is sg-open. The complement of ψ-closed set is called ψ-

open set. Every closed (semi-closed) set is ψ-closed set and every ψ-closed set is sg-closed 

(gs-closed) set. The family of all ψ-closed sets of any topological space (X, τ) is denoted by 

ψc (X, τ). 

Definition 2.5: A subset A of a topological space (X, τ) is called ĝ -closed
10

 if 

cl(A) ⊆ U whenever A ⊆ U and U is semi-open. The complement of ĝ -closed set is called 

ĝ -open set. Every closed set is ĝ -closed set and every ĝ -closed set is ψ-closed (sg-closed, 

gs-closed, g-closed) set. The family of all ĝ -closed sets of any topological space (X, τ) is 

denoted by ĝ c (X, τ). 

Definition 2.6: A map f : (X, τ) → (Y, σ) is called semi-closed map
8
 (resp. sg-closed 

map
11

, gs-closed map
11

, ψ-closed map
12

, ĝ -closed map
13

) if the image of each closed set in 

(X, τ) is semi-closed set (resp. sg-closed set, gs-closed set, ψ-closed set, ĝ -closed set) in 

(Y, σ). Every closed map is semi-closed map. Every semi-closed map is ψ-closed map. 

Every ψ-closed map is sg-closed map, every sg-closed map is gs-closed map and every ĝ -

closed map is ψ-closed map (sg-closed map, gs-closed map, g-closed map). 

Definition 2.7: A map f : (X, τ) → (Y, σ) is called ĝ -continuous
13

 (resp. ψ-

continuous
9
, g-continuous

14
, gs-continuous

4
, ψ-irresolute

9
, sg-irresolute

15
, gs-irresolute

4
, 

gsg-irresolute
5
, sgs-irresolute

5
, gsψ-irresolute

6
, ψgs-irresolute

6
, sgψ-irresolute

7
, ψsg-

irresolute
7
, ĝ -irresolute

13
) if the inverse image of every closed (resp. closed, closed, closed, 

ψ-closed, sg-closed, gs-closed, gs-closed, sg-closed, gs-closed, ψ-closed, sg-closed, ψ-

closed, ĝ -closed) set in (Y, σ) is ĝ -closed (resp. ψ-closed, sg-closed, gs-closed, ψ-closed, 

sg-closed, gs-closed, sg-closed, gs-closed, ψ-closed, gs-closed, ψ-closed, sg-closed, ĝ -

closed) set in (X, τ).  

Definition 2.8: A bijective map f : (X, τ) → (Y, σ) is called 

(i) semi-homeomorphism (B)
5
 (briefly s.h. (B)) if f is continuous and semi-open 

map. 
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(ii) semi-homeomorphism (C.H.)
16

 (briefly s.h. (C.H.)) if f is irresolute, presemi-

open (i.e. f(U) is semi-open for every semi-open set U of (X, τ)). 

(iii) ψ-homeomorphism
12

 if f is both ψ-continuous and ψ-open map 

(iv) ĝ  -homeomorphism
13

 if f is both ĝ -continuous and ĝ -open map 

(v) semi-generalized homeomorphism
4
 (briefly sg-homeomorphism) if f is both sg-

continuous and sg-open. 

(vi) generalized semi-homeomorphism
4
 (briefly gs-homeomorphism) if f is both gs-

continuous and gs-open. 

(vii) sgc-homeomorphism
4
 (resp. gsc-homeomorphism

4
, ψ*-homeomorphism

12
, ĝ c-

homeomorphism
13

, gsg-homeomorphism
5
, sgs-homeomorphism

5
, gsψ-

homeomorphism
6
, ψgs-homeomorphism

6
, sgψ-homeomorphism

7
, ψsg-

homeomorphism
7
) if f and f 

-1
 are sg-irresolute (resp. gs-irresolute, ψ-irresolute, 

ĝ -irresolute, gsg-irresolute, sgs-irresolute, gsψ-irresolute, ψgs-irresolute, sgψ-

irresolute, ψsg-irresolte). 

Definition 2.9: A space (X, τ) is called T1/2-space
1
 (resp. Tb-space

11
, bT̂ -space

13
) if 

every g-closed set (resp. gs-closed set, gs-closed set) is closed set (resp. closed set, ĝ -

closed set). 

Proposition 2.1: In a T1/2-space every gs-closed set is semi-closed set 
11

. 

 

3. ˆGSG -Homeomorphism 
 

 In this section we introduce ˆgsg -homeomorphisms and then investigate the group 

structure of the set of all ˆgsg -homeomorphisms. 

Definition 3.1: A map f : (X, τ) → (Y, σ) is called a ˆgsg -irresolute map if the set      f
- 

-1 
(A) is ĝ -closed in (X, τ) for every gs-closed set A of (Y, σ).  

Definition 3.2: A bijection f : (X, τ) → (Y, σ) is called a ˆgsg -homeomorphism if the 

function f and the inverse function f
  -1

 are both ˆgsg -irresolute maps. If there exists a ˆgsg -

homeomorphism from X to Y, then the spaces (X, τ) and (Y, σ) are called ˆgsg -

homeomorphic. The family of all ˆgsg -homeomorphisms of any topological space (X, τ) is 

denoted by ˆgsg h(X, τ). 

Remark 3.1: The following examples show that the concepts of homeomorphism and 

ˆgsg -homeomorphism are independent of each other. 

Example 3.1: Let X = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, X}. Define f : (X, τ) → 

(X, τ) as identity mapping then f is a homeomorphism but not a ˆgsg -homeomorphism. 

Example 3.2: Let X = Y = {a, b, c}, τ = {φ, {a}, {b ,c}, X} and σ = {φ, Y}. Define f : 

(X, τ) → (Y, σ) as identity mapping, then f is a ˆgsg -homeomorphism but not 

homeomorphism. 
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Proposition 3.1: Every ˆgsg -homeomorphism is (i) sgc-homeomorphism (ii) sgs-

homeomorphism (iii) gsg-homeomorphism (iv) gsc-homeomorphism (v) sgψ-

homeomorphism (iv) ψsg-homeomorphism (vii) gsψ-homeomorphism (viii) ψgs-

homeomorphism (ix) ψ*-homeomorphism (x) ĝ c- homeomorphism. 

The converse of the above proposition is not true. It can be seen from the following 

examples. 

Example 3.3: Let X = Y = {a, b, c}, τ = {φ, {a}, {a, b}, X} and σ = {φ, {a}, {a, b}, {a, 

c}, Y}. Define f : (X, τ) → (Y, σ) by identity mapping then f is sgc-homeomorphism but 

not gs ĝ  -homeomorphism. 

Example 3.4: Let X = Y = {a, b, c}, τ = {φ, {a}, X} and σ = {φ, {a}, {a, b}, Y}. 

Define f :(X, τ) → (Y, σ) by identity mapping then f is sgs-homeomorphism but not gs ĝ  -

homeomorphism. 

Example 3.5: Let X = {a, b, c} and τ = {φ, {a}, {c}, {a, c}, X}. Define f : (X, τ) → (Y, 

σ) by identity mapping then f is gsg-homeomorphism but not gs ĝ -homeomorphism, for f 

and f
  -1

 are not gs ĝ -irresolute maps. 

Example 3.6: Let X = Y = {a, b, c}, τ = {φ, {a}, {a, b}, X} and σ = {φ, {a}, {b}, {a, 

b}, {a, c}, Y}. Define f: (X, τ) → (Y, σ) by identity mapping then f is gsc-homeomorphism 

but not gs ĝ -homeomorphism. 

Example 3.7: In example 3.3, map f is sgψ-homeomorphism but not gs ĝ -

homeomorphism. 

Example 3.8: Let X = Y = {a, b, c}, τ = {φ,  X} and σ = {φ, {a, b}, Y}. Define f : (X, 

τ) → (Y, σ) by identity mapping then f is ψsg-homeomorphism but not gs ĝ -

homeomorphism. 

Example 3.9: Let X = {a, b, c} and  τ = {φ,  {a}, {b}, {a, b}, X}. Define f : (X, τ) → 

(X, τ) by identity mapping then f is gsψ-homeomorphism but not gs ĝ -homeomorphism. 

Example 3.10: In example 3.6, map f is ψgs-homeomorphism but not gs ĝ -

homeomorphism. 

Example 3.11: In example 3.3, map f is ψ∗-homeomorphism but not gs ĝ -

homeomorphism. 

Example 3.12: Let X = Y = {a, b, c}, τ = {φ,  {a}, {c}, {a, c}, X} and σ = {φ, {a, c}, 

Y}. Define f : (X, τ) → (Y, σ) by identity mapping then f is ĝ c-homeomorphism but not 

gs ĝ -homeomorphism. 

Proposition 3.2: Every gsg (sgs)-homeomorphism from bT̂ -space onto itself is ˆgsg -

homeomorphism. 

Proposition 3.3: If f : (X, τ) → (Y, σ) is ˆgsg -homeomorphism then every gsc ( ĝ c)-

homeomorphism from X to Y is ĝ c (gsc)-homeomorphism. 

Proof : Straight forward. 
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Theorem 3.1: If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) are gs ĝ -homeomorphisms 

then their composition gof :  (X, τ) → (Z, η) is also gs ĝ -homeomorphism. 

Theorem 3.2: If gs ĝ h(X, τ) is non-empty then the set gs ĝ h(X, τ) is a group under the 

composition of maps. 

Proof: Define a binary operation * : gs ĝ h(X, τ) × gs ĝ h(X, τ) → gs ĝ h(X, τ) by f*g = 

gof for all f, g ∈ gs ĝ h(X, τ) and o is the usual operation of composition of maps, then by 

theorem 3.1 gof ∈ gs ĝ h(X, τ). We know that the composition of maps is associative and 

the identity element I: (X, τ) → (X, τ) belonging to gs ĝ h(X, τ) serves as the identity 

element. If f ∈ gs ĝ h(X, τ) then f
  -1

 ∈ gs ĝ h(X, τ) such that fof
  -1

 = I = f
  -1

of and so inverse 

exists for each element of gs ĝ h(X, τ). So (gs ĝ h(X, τ), o) is a group under the operation of 

composition of maps. 

Theorem 3.3: If f: (X, τ) → (Y, σ) be a gs ĝ -homeomorphism then f induces an 

isomorphism from the group gs ĝ h(X, τ) onto the group gs ĝ h(Y, σ). 

Proof: Define θf : gs ĝ h(X, τ) → gs ĝ h(Y, σ) by θf(h) = fohof
 -1

 for every h ∈ 

gs ĝ h((X, τ). Then θf is a bijection. Further, for all h1, h2 ∈ gs ĝ h (X, τ), θf (h1oh2) = 

fo(h1oh2)of 
-1

 = (foh1of 
-1

) o (fo h2of 
-1

) = θf(h1) o θf (h2). So θf is a homomorphism and so it 

is an isomorphism induced by f. 

Theorem 3.4: gs ĝ -homeomorphism is an equivalence relation in the collection of all 

topological spaces. 

Proof: Reflexivity and symmetry are immediate and transitivity followed from 

Theorem 3.1. 
 

4. ĜGS -Homeomorphism 
 

 In this section we introduce ĝgs -homeomorphism and investigate its properties. 

Definition 4.1: A map f: (X, τ) → (Y, σ) is called ĝgs -irresolute map if the set            

f 
-1

(A) is gs-closed in (X, τ) for every ĝ -closed set A of (Y, σ). 

Definition 4.2: A bijection f : (X, τ) → (Y, σ) is called a ĝgs -homeomorphism if the 

function f and the inverse function f 
-1

 are both ĝgs -irresolute maps. If there exists a ĝgs -

homeomorphism from X to Y, then the spaces (X, τ) and (Y, σ) are called ĝgs -

homeomorphic. 

The family of all ĝgs -homeomorphisms of any topological space is denoted by ĝgs h 

(X, τ). 

Proposition 4.1: Every (i) homeomorphism (ii) gc-homeomorphism (iii) sgc-

homeomorphism (iv) gsc-homeomorphism (v) sgs-homeomorphism (vi) gsg-

homeomorphism (vii)  sgψ-homeomorphism (viii) ψsg-homeomorphism (ix) gsψ-

homeomorphism (x) ψgs-homeomorphism (xi) ψ*-homeomorphism (xii) ˆgsg -

homeomorphism (xiii) ĝ c-homeomorphism, is ĝ gs-homeomorphism. 
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The following examples show that the converse of the above proposition is not true. 

Example 4.1: In example 3.2, map f is ĝ gs-homeomorphism but not homeomorphism. 

Example 4.2: In example 3.4, map f is ĝ gs-homeomorphism but not gc-

homeomorphism for f
  -1

 is not a g-irresolute map. 

Example 4.3: In example 3.6, map f is ĝ gs-homeomorphism but not sgc-

homeomorphism for f is not a sg-irresolute map. 

Example 4.4: In example 3.3, map f is ĝ gs-homeomorphism but not gsc-

homeomorphism for f
  -1

 is not a gs-irresolute map. 

Example 4.5: Let X = Y = {a, b, c,}, τ = {φ, {a}, {a, b}, X} and σ = {φ,  {a, b}, Y}. 

Define f : (X, τ) → (Y, σ) by identity mapping then f is ĝ gs-homeomorphism but not sgs-

homeomorphism . 

Example 4.6: In example 3.6, map f is ĝ gs-homeomorphism but not gsg-

homeomorphism. 

Remark 4.1: In example 3.6, map f is ĝ gs-homeomorphism but not sgψ-

homeomorphism for f is not a sgψ-irresolute map. 

Example 4.7: Let X = Y = {a, b, c,}, τ = {φ, {a}, {b, c}, X} and σ = {φ,  Y}. Define f : 

(X, τ) → (Y, σ) by identity mapping then f is ĝ gs-homeomorphism but not ψsg-

homeomorphism . 

Example 4.8: In example 3.6, map f is ĝ gs-homeomorphism but not gsψ-

homeomorphism for f is not a gsψ-irresolute map. 

Example 4.9: In example 4.5, map f is ĝ gs-homeomorphism but not ψgs-

homeomorphism for f
  -1

 is not a ψgs-irresolute map. 

Example 4.10: In example 3.2, map f is ĝ gs-homeomorphism but not ψ*-

homeomorphism for f
  -1

 is not a ψ-irresolute map. 

Example 4.11: Let X = Y = {a, b, c,}, τ = {φ, {a}, {a, b}, X} and σ = {φ, {a, b}, Y}. 

Define f : (X, τ) → (Y, σ) by identity mapping then f is ĝgs -homeomorphism but not ˆgsg -

homeomorphism for f is not ˆgsg -irresolute map. 

Example 4.12: In example 4.11, map f is ĝ gs-homeomorphism but not ĝc -

homeomorphism for f is not a ĝ -irresolute map. 

Theorem 4.1: Every ĝgs -homeomorphism from a Tb-space onto itself is a 

homeomorphism. So ĝgs -homeomorphism is gs-homeomorphism, sgc-homeomorphism, 

gsc-homeomorphism, sgs-homeomorphism, gsg-homeomorphism, sgψ-homeomorphism, 

ψsg-homeomorphism, gsψ-homeomorphism, ψgs-homeomorphism, ψ*-homeomorphism, 

ˆgsg -homeomorphism and ĝc -homeomorphism. 

Proof: In view of the fact that in a Tb-space every gs-closed set is closed, the proof is 

obvious. 

Theorem 4.2: Every ĝgs -homeomorphism from a bT̂ -space onto itself is a ˆgsg -

homeomorphism. So ĝgs -homeomorphism is sgc-homeomorphism, ψ*-homeomorphism, 
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gsg-homeomorphism, sgs-homeomorphism, gsc-homeomorphism, ψgs-homeomorphism, 

gsψ-homeomorphism, ψsg-homeomorphism, sgψ-homeomorphism, gc-homeomorphism 

and ĝ c-homeomorphism. 

Proof: Since in bT̂ -space every gs-closed set is ĝ -closed set so proof is obvious. 

  

All the above discussions of Sections 3 and 4 can be summarized by the following 

diagram. 
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