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Abstract: In this paper the following theorem on absolute Nevanlinna
summability of conjugate derived Fourier series has been proved, which
generalizes various known results.

Theorem: Let 1< p <« and the function g, satisfy the condition

1
Jasdi=1
0

for 6 >0, p=[5], we assume

95(1) e L(0,1)

t(Y—p+l

where
1
05(t) = [ 4§ (x)dx
1-t

and y(¢) is of bounded variation in (0,7) such that

J‘&dt =0(0(u)) as u —> oo
L L ()

then at ¢=x the conjugate derived Fourier series of f is summable by the
method |N,q(n)|.

Keywords and Phrases: Absolute Nevanlinna summability, Conjugate derived
Fourier series.

2000 Mathematics Subject Classification No.: 40D05, 40E05, 40F05, 40G05,
42C05 and 42C10.



76 Satish Chandra and Garima Chaudhary

1. Definitions and Notations

Given a series Zun, let F(w)= Zun . Let g5 =qs(¢) be defined for 0<7<1. The

n<w

N(qs) transform N(F,qs) of F is defined by
1

N(F.q5)(@) = [ 45 () F(@,0)dt
0

The series zptn is said to be summable by the method N(g,)to the sum S if

lim N(F,q5)(w)=s.

W—>0

It is said to be absolute summable by the method N(gs)and we shall write
D> u, €|N(gy)| if
N(Faq&‘)(a)) € BV(A,OO)

For some A >0, which is indeed equivalent to

['e)

]

A

>

n do
Zq(S — |nu,|— <o
@ @

n<w

For the regularity we need
1
j%mw=L
0

The parameter o will be a non-negative real number. We have further two sets of
restriction on g ; one for 0 <& <1and the other for 6 >1.
In the case 0 <9 <1, g4(¢)is increasing for 0 < <1.

In the case 0 21, g satisfies following:

gs(t)is decreasing for 0 <t <1with p =[], the integral part of o,

d\
[EJ qs(t)e Ac[0,1].

a\
[(EJ qd(t)] =0 k=0,1,..... (p-1),

t=l1

p
(- (%} gs(t)=0 and is increasing.
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Also, for 6 >0, p=[0], we assume

05(1) e L(0,1),

tﬁ—p+l

1
where Os()= I qu) (x)dx .

1-t

2. Introduction

Let f(¢)be a continuous function of bounded variation periodic with period 27 and

Lebesegue integrable over (—z,7)and have a derivative f '(x) at ¢t =x. Let the Fourier

series corresponding to f(¢) be

1 = .
2.1) —a0+2(an cosnt+b, sinnt) .
n=1
The series
(2.2) Zn(bn cosnt—a, sinnt) ,

n=l1

which is obtained by differentiating (2.1) term by term, is called the first derived series or
derived Fourier series of f(¢).

The series conjugate to (2.2) is

(2.3) in(an cosnt +b, sinnt) .
n=l
We write
g0 =g(t,x)= f(x+0) = f(x=1)=21f (x),
h(t)=h(t,x)= f(x+0)+ f(x—1)—2 f(x)
t
G(t) = [|dg ()
0
t
H(t) = j|dh(u)|
0
and

__L” oty ) L7 2t
T(x)= 4”£h(f)00560 (2}# hm{ 2 [ h(t)cosec (2}#}.

0 ﬂ.g
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We denote the integral

1% 2( ¢
-—— I h(t)cosec” | — |dt
4”1/;1 2

by T,(x),sothat,as n >0, T (x) > T(x),ie.

lim 7,(x)=T(x).

If the function f(x)is of bounded variation, then 7'(x) exists for almost all values of x .

Generalizing the theorems of Bosanquet'? and Samal® proved the following theorem.

Theorem A. Let 1> c > 0. Let the function q, satisfy the conditions

1
[gs®de=1
0
- . 9.
and 0< 0 <1, g5 (t)is increasing for 0 <t <1 and let =7 € L(0,1). Then
t

Va
jt“ ldg ()] <0 =3|N(g.)|.
0
In 2000, Dikshit* extended the above result for absolute Nevanlinna summability of
Fourier series in the following form:

Theorem B. Let o >0 and let the functions q,, satisfy the conditions

1
Jasdi=1
0

t
for 620, p=[0]. We assume tgf;)] e L(0,1),

1
where Qg(t) = .[ qu) (x)dx,
1=t

with 6 =a . If ¢,(t) e BV (0,7), then at t = x, the Fourier series of f is summable by the
method |N(qa )| .

The object of the present paper is to extend the above theorem for absolute Nevanlinna
summability of conjugate derived Fourier series.

3. Main Theorem

We shall prove the following theorem.
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Theorem: Let 1< p <« and the function q,, satisfy the condition:

1
3.1 jq(s(t)dtzl
0

t
for >0, p=[J]. We assume gg( ) e L(0,1)
t —p+l

where

1
(3.2) 05 = [ g (x)dx

1-¢

and y(¢) is of bounded variation in (0,7) such that

(3.3) T&dt =0(Q(u)) as u—>wo.
L Lx(@)

Then at ¢=x, the conjugate derived Fourier series of f is summable by the method
V. q(m) .

Proof: Let 3%(x) denote the sum of the first 7 terms of the series (2.3) at the point

t = x, then we have
- 1% 0| .
IH(x) = —;J;rf(t)a{zl:smv(t—x)}N(F,qg)(a))dt
el
T COS| — |—cos| n+— |t
_ _iji 2 2
ﬂodt 25in(tj
2
t 1
L7 cos(zj—cos(n+2jt
=-— N(F,q5)@)d h(r) .

70 2sin L
2

Eié’ (x)= —Lj{coti(l —cosvt)+sin vt} N(F,q5)(@)dh(t)
2r 0 2

{(f(x+D)+ f(x-D} N(F,q5)@)dt

Therefore

—L_[sin vt N(F,q5)(@)dh(t)
2 0
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1

But
1
1/n cosgt v
M| < [ |—-2sin N a5) @) (o)
0 |sin—t¢
1/n
<2" j IN(F,q5)@)||dh (2)
0
= ZVH(lj
n
= o(l).
Now

1

_(E]Nz - .[ cot(éj(l—cosvt) N(F, q5)(@)dh(t)

b .[ cos(é) N(F, qs5)(@)dh(t)

T

+il;..n cot (éj cosvt N(F, q5)(@)dh(t)

T

= —i{cot (%}h(t)N(R 615)(50)}

1/n

|
5 | Jeosec® (éjh(t) N(F, g5 ) ) dt

+L .[ cot(i cosvt N(F, q5)(w)dh(t)
272'1/n 2

N—

n

njh[ : jN(F,q5>(w)

+T,(x)

T

+iﬁ[n cot [éj cosvt N(F, q5)(@)dh(t)
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1% t
= o()+T,(x) +— j cot| — | cosvi N(F, q5)(w)dh(t)
2 n 2

for tends to zero with 7, as f(x) exists.

h()
t
Hence

34 (x) =T, (x) = 2—1/j cos(zjcosvt N(F, q5)(@)dh(?)

—ljsin vt N(F,q5)(@) dh(1) +o(1)
2 0

%T ( ]cosvt N(F, g5 )(@)dh(t)
1n

v
L j sinvt N(F,q5)(w)dh(r)
2z 1/n

1/n
—2L j sinvt N(F, g5 )(@) dh(t) +o(1)
T

o cos(v+ Jl
= — j ————N(F.q;5) (@) dh(t) +o()

% T sin
2

ng ,;q M3 0-T,(0] N(F.g5)@)

By use of transformation

t,—T,(x)=

1 " ju cos(n—k+2jt
- —— >4 5 N(F.g5)@)dh(0)+o()

1
cos(n k+2jt
[ a3 s—— 2L

N(F, 1
220,0) Q(s(t)l/n = sm(tj g
2

81
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1 P n COS(n—k+2jt
" 2oy ) M §————— N(F, +o(l
Zﬂth(t)N"n U;)qa sin(tj (F,q5)@)+o(1)
2

where p is small but fixed.

Now for 1 <t < p, we have
n

n cos[n—k+;jt Q5[1j

———N(F,q5 =0| ——=

E)Qé' Sin(tj ( qs )(C()) l/’t’(t)
2

by virtue of condition of theorem.

Thus

1 p n cos(n—k+;jt
tn _Tn ): O —— dh(t) k— N F, ) ol
" (Qﬁ(f))uU &% sin(tJ e

) j |dh(t)|7+o(1)

=o(l).

This completes the proof of the theorem.

:O{ 1 ]" Qﬁ@

1/n
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