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Abstract: In this paper, a control mathematical model is proposed to study the 

depletion of resource-based industry in a forest habitat due to the increase of both 

industries and pollutants/ toxicants .The toxicants are emitted into the 

environment by external sources   and their concentration is augmented by a 

precursor produced by industries itself. The densities of resource biomass and 

resource-based industries decrease as the concentration of the toxicants increases 

but on applying the control measure, the resource biomass density as well as the 

density of industries increases. It is found that if the densities of industries and the 

emission rate of pollutant increase without control, the forestry resource may 

become extinct. In the view of this a control ecological model in this paper has 

been proposed using stability theory to obtain the criterion for the survival of 

resource-based industries. The results are illustrated with the help of a numerical 

example.  

Keywords: Industry, Precursor, Resource biomass, Uptake phase, Control 

measure.  
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1. Introduction 
 

The environmental problem which society faces today is the depletion of resources 

such as forestry, fertile topsoil, crude oil and minerals etc. due to rise in population, 

Industrialization and pollution. The increasing amount of toxic elements in the environment 

caused by industrialization affects the structure and functions of eco-system. An example 

that suggests the model is that of fisheries and fish-based industries, where the pollutants 

are emitted from industries, situated in the nearby areas of the water bodies, affecting the 

regeneration and health of the fishes and therefore pollutants not only affect the resources 

but also affect the emitter itself (industries).
 1-3           
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In recent years some investigations have been conducted to study the effects of 

toxicants (pollutants) on resource-based industries using mathematical models
4-9

 but in 

these studies authors did not consider the effect of the toxicants whose concentration are 

augmented by precursors(an intermediate product which may get converted into a toxic 

material in the environment harmful to the producing species as well as to other species 

living in the same habitat) produced by industries, which in turn has effect on itself. It is 

therefore necessary that we develop an environmental management system to reduce the 

emission rate of toxicant in the environment by using some removal mechanism. We have 

proposed a dynamical model for conservation of resource-based industries by controlling 

the emission rate of pollutant into the environment. 

 
2. Mathematical Model 

 

 We consider a resource-based industry growing logistically in its habitat, which is 

being affected by a toxicant, introduced in the environment by some external sources and 

augmented by a precursor produced by industry itself. It is assumed that the rate of 

emission of pollutant/ toxicant into the environment is a constant. It is also assumed that the 

concentration of this toxicant in the environment decreases due to its assimilation, 

absorption, deposition, uptake etc. by resource biomass ,the amount being proportional to 

resource biomass density as well as environment concentration of the toxicant. It is 

assumed further that the toxicant in the environment as well as in uptake phase decrease 

due to natural factors by an amount which is proportional to its concentration in various 

cases and the amount of precursor produced by the industries is proportional to the density 

of the producing industry.  In view of the above assumptions, we propose the following 

model, governing the dynamics of the resource-based industries, concentrations of the 

toxicants/ pollutant, and the control mechanism. 
 

( ) 0 1

dI
g B r I IB

dt
α= − +

 

( )
2

0

2
( )

s BdB
s U B IB k BC

dt L C
α α= − − −

 

                                0

dP
I P P

dt
λ λ θ= − −

 

 (2.1)         
1

dC
Q P C BC UB F

dt
π θ δ α πν µ= + − − + −

   

(1 )
dU

k BC U UB
dt

α φ ν= − − −
 

( )1 0p

dF
C C F

dt
θ θ= − −

  

0(0) 0,I I= ≥    
0

(0) 0,B B= ≥    
0

(0) 0,P P= ≥     
0

(0) 0,C C= ≥     

0
(0) 0,U U= ≥  

0
(0) 0,F F= ≥   

1
0 k  1, 0 1, 0 1.π π≤ ≤ ≤ ≤ ≤ ≤  
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Here I(t) is the density of industries based on resource biomass of density B(t), P(t) is the 

density of precursor, C(t) and U(t) are the concentrations of the pollutants in the 

environment and in the uptake phase of the biological species respectively at any time t > 0. 

Q is the Cumulative rate of production of a toxicant into the environment from the external 

sources. The constant λ is the growth rate coefficient of precursor produced by industries, 

0
λ  is the natural depletion rate coefficient of precursor and θ is the fraction of the 

precursor, part of which is used in forming the toxicant. The constant
1

π  is the coefficient 

of augmentation of the concentration of the same toxicant which is being emitted into the 

environment,
1

α is the growth rate coefficient of industries and 
2

α is the depletion rate 

coefficient of resource biomass. The constants 0 and 0δ φ> >  are the natural wash out 

rate coefficients of toxicants and uptake phase respectively, 0α >   is the rate of depletion 

of pollutant in the environment due to uptake of pollutant by the resource biomass. Also 

some amount of the resource biomass may die out at a rate ν  due to excessive and 

unbearable presence of the toxicant and a fraction of π this may again re-enter into the 

environment. In (2.1) C>0k Bα   is a fraction of CBα  directly affecting resource biomass  

and remaining (1-k) CBα  of it is up taken by the resource biomass which decreases the 

intrinsic growth rate of B. F(t) denotes the environmental management system for reducing 

the concentration of toxicant augmented by precursor by govt./N.G.O’s/ Education 

awareness, reforestation, taxation etc. 

µ F is a pollution control device which controls the growth of emission of the toxicant 

in the environment. Cp is the permissible level of the concentration of toxicant (C), which 

is harmless to the resource biomass. The term θ0F is to account for some practical 

difficulties in implementing the fool proof environmental management system.  

1 0 0 1 2 0, , , , , , , , , , , , ,pQ C rα δ φ ν θ θ θ λ λ α α   are all positive constants.   

 In the model (2.1) the function ( )s U  represents the growth rate coefficient of resource 

biomass which decreases with the increases of U and hence, 

(2.1a) ( ) 0

( )
0 0, 0 , for U 0.

ds U
s s

dU
= > < ≥                              

Similarly the function ( ) L C represents the carrying capacity (i.e. the maximum density    

of resource biomass which the environment can support). We assume that ( ) L C decreases 

as C increases hence we have,  

(2.1b)       ( )
( )

0
0 0, 0, for 0.

dL C
L L C

dC
= > < ≥

                      

Again g(B) denotes the growth rate coefficient of industry which increases as B increases 

(2.1c)  

      
( )

( )
0

0 0, 0, for 0.
dg B

g g B
dB

= > > ≥
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3. Equilibrium Analysis 
 

The given model (2.1) has two non-negative real equillibria (Feasible equilibrium 

points) in - - - - -  I B P C U F  space denoted by 
0

ˆˆ ˆ ˆ( ,0, , ,0, )E I P C F  and  

( , ,  ,  ,  ,  ).E I B P C U F
∗ ∗ ∗ ∗ ∗ ∗ ∗  

  For 
0

ˆˆ ˆ ˆ( ,0, , ,0, )E I P C F , 

                                0

0

ˆ ,
g

I
r

=  

                                0

0 0

ˆ ,
( )

g
P

r

λ

λ θ
=

+
 

0 0
0 1 1

0 0

0 1

( )
ˆ ,

p

g
Q C

r
C

λ θ
θ π θ µθ

λ θ

δθ µθ

  
+ +  

+  =
+

 

0 1
1 1 1

0 0

0 1

( )
ˆ ,

p

g
Q C

r
F

λ θ
θ π θ δθ

λ θ

δθ µθ

  
+ −  

+  =
+

 

provided  0 1

1 1 1

0 0( )
p

g
Q C

r

λ θ
θ π θ δθ

λ θ

 
+ > 

+ 
, 

where 
0 1

0δ θ µθ+ ≠ .  

The other interior equilibrium * * * * * *( , ,  ,  ,  ,  )E I B P C U F
∗ is the solution of the 

following system of equations:                                     

(3.1a)            
0 1

( )
( ),

( )

g B
I i B

r Bα
= =

−
  (assuming)        provided  

0 1
0r Bα− >                   

(3.1b)            2

0

( ) ( ) ( ) ( )
,

s U L C IL C k CL C
B

s

α α− −
=   provided  

2
( ) 0s U I k Cα α− − >   

(3.1c)             
0

( )
,

( )

i B
P

λ

λ θ
=

+
                                                                                                

(3.1d)            

( ) 0
0 1 1

0

1

( )

( )
( ),

( )

p

i B
B Q C

C e B
f B

λ θ
φ ν θ π θ µθ

λ θ

  
+ + +  

+  = =  (assuming)           

(3.1e)             

0
0 1 1

0

1

( )
(1 )

( )
( ),

( )

p

i B
k B Q C

U h B
f B

λ θ
α θ π θ µθ

λ θ

  
− + +  

+  = = (assuming)         
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(3.1f)        ( )1

0

( ( ) ) ( ) , (assuming) providedp pF e B C f B e B C
θ

θ
= − = >                                            

 where  [ ] 2

1 0 1 0 0 1 0( ) ( ) ( ) [1 (1 )]f B B k Bφ δ θ µθ φ α θ ν δ θ µθ αν θ π= + + + + + − −   

and   
0 1

( ) ( )i B r I IB g Bα= − − . 

Rewrite equation (3.1b) as 

(3.1g)  
0 2

( ) ( ) ( ) ( ) .s B s U L C IL C k CL Cα α= − −                                                              

Substituting the value of I, C and U from equations (3.1a),(3.1d)and  (3.1e) in the  above 

equation (3.1g), we get  

(3.2)        
0 2

( ( )) ( ( )) ( ) ( ( )) ( ) ( ( )).s B s h B L e B i B L e B k e B L e Bα α= − −                            

Now we show the existence of the internal equilibrium point * * * * * *( , ,  ,  ,  ,  )E I B P C U F
∗  , 

as follows. 

Let us consider a function F(B) such that  

(3.2a)        
0 2( ) ( ( )) ( ( )) ( ) ( ( )) ( ) ( ( )).F B s B s h B L e B i B L e B k e B L e Bα α= − + +                         

Putting the value B=0 and L0 in equation (3.2a), we get 

(3.2b)        0

0 2

0

(0) ( (0))[ (0)]
g

F L e s k e
r

α α= − − −                                                                     

L(e(0)) being carrying capacity  is always positive and from equation (3.1b) 

                                     
2

( ) 0s U I k Cα α− − > . 

 This gives that at B=0, 0

0 2

0

(0) 0,
g

s k e
r

α α− − >  

      and hence                   F(0)<0. 

Again                     

(3.2c)             
0 0 0 0 2 0

( ) [ ( ( ) ( )] 0.F L L s s h L i Lα= − + >                                                         

Thus, there exists a root  B
∗
 in the interval 

0
0 B L∗< < such that ( ) 0F B

∗ = . 

Now for the Uniqueness of *B , the necessary and sufficient condition is ( ) 0F B′ >  in 

the interval 
0

0 B L< <  . 

From (3.2a), we get 

0 2 2
( ) [ ( ( ) ( ) ( )] ( ( )[ ] 0.

dL de ds dh di de
F B s s h B i B k e B L e B k

de dB dh dB dB dB
α α α α′ = + − + + + − + + >   

Since B B
∗=  is the root of the equation (3.2a), we get  

0

0 2
( ) ( ( )) 0.

( )

s B dL de ds dh di de
F B s L e B k

L e de dB dh dB dB dB
α α

 
′ = − + − + + > 

 
 

Thus the condition for unique and positive B∗  is ( ) 0F B′ > .Therefore B∗  has been 

determined and then I ∗ , , ,  and  P C U F
∗ ∗ ∗ ∗

 can be found from equations (3.1a)-(3.1f). 
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In view of the above, we have the following conditions: 

 Let F(B) and e(B) be given by equations  (3.2a) and (3.1d) respectively. 

If       (i) 
0 1 0

0r Lα− >  

          (ii) 
2

( ) 0s U I k Cα α− − >                                                                                

(3.2d)         (iii) ( ) pe B C>  

          (iv) ) ( ) 0F B′ >  for   
0

0 B L< < , 

then there exists a unique interior equilibrium ( , , , , , )E I B P C U F∗ ∗ ∗ ∗ ∗ ∗ ∗ for the model (2.1). 

Now let us examine the effect of Q  on B i.e. the cumulative rate of production of the 

pollutant on the density of the resource biomass. 

From equation (3.2),we have 

0 2
( ( )) ( ( )) ( ) ( ( )) ( ) ( ( )).s B s h B L e B i B L e B k e B L e Bα α= − −  

Differentiating with respect to Q, we get 

(3.3) 0 2 2( ) ( ) ( ) ( )
dB dL de dS dh di dL de de dL de

s s h L e L e i k L e k e
dQ de dQ dh dQ dQ de dQ dQ de dQ

α α α α= + − − − −                   

Using the formulae 

                                
de e dB e

dQ B dQ Q

 ∂ ∂
= + 

∂ ∂ 
, 

(3.3a)                           
dh h dB h

dQ B dQ Q

 ∂ ∂
= + 

∂ ∂ 
,                                                                 

                               
di i dB i

dQ B dQ Q

 ∂ ∂
= + 

∂ ∂ 
, 

substituting the values from (3.3a) to (3.3) and rearranging the terms, equation (3.3) 

becomes 

(3.4)   

0

0 2

0

2

( ) ( ) ( )
( )

( ) ( ) ( ) .
( )

s BdB dL e dS h i e
s L e L e k L e

dQ L e de B dh B B B

s B dL e e dS h i
k L e L e L e

L e de Q Q dh Q Q

α α

α α

 ∂ ∂ ∂ ∂
− − + + 

∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂
= − + −

∂ ∂ ∂ ∂

                              

Using the result of uniqueness i.e. ( ) 0F B′ >  in the interval 00 B L< < , in addition to 

the equations (3.1d), (3.1e) and conditions (2.1a), (2.1b), we analyze equation (3.4) as 

                       ( ) ( )+vefuntion = -ve function
dB

dQ
.  

Therefore,                            

(3.4a)                                                 0
dB

dQ
< .                                                                        
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From this it is concluded that the resource biomass density decreases with the increases in 

the cumulative rate of production of the pollutants in the environment. 

From equation (3.1f), 

                                      1

0

( ( ) ) ( )pF e B C f B
θ

θ
= − =    . 

   Differentiating with respect to F, we get 

(3.4b)                                        1

0

1 .
de dB

dB dF

θ

θ

 
=  

 
                                                          

From equation (3.1d), we get  0.
de

dB
>       

Using this result in the above equation (3.4b), we have  

(3.4c)                                                 0.
dB

dF
>                                                                      

Again from equation (3.1a),  

                                                   
0 1

( )
,

( )

g B
I

r Bα
=

−
    

which on differentiation  with respect to F gives, 

                           
( )

( )
0 1 1

2

0 1

( ) ( )
.

r B g B g BdI dB

dF dFr B

α α

α

 ′− +
=  

−  

  

 Here ( )1 0 and ( ) 0 and since 0o

dB
r B g B

dF
α ′− > > >  , 

(3.4d)                                                       0.
dI

dF
>                                                           

From (3.4c) and (3.4d) it is clear that with the increase in the control measure (efforts),the 

resource biomass density as well as the density of the industries based on the resource 

biomass increases thus the control measure (efforts) has a positive impact in the system and 

the industries may be saved from going to extinction. 

 

4. Stability Analysis 
 

Here we shall discuss the local as well as global stability of the equilibrium points .The 

local stability of the equilibria can be studied from variational matrices corresponding to 

each equilibrium point and for the global stability, suitable Lyapunov functions are found in 

the interior of some region Ω .   
    

4a. Local Stability via Eigen Value Method 

To study the local stability behavior of
0

 E  and E ,
∗

 we compute the variational 

matrices M0 and M∗  corresponding to
0

 E  and E∗ as follows:  
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0 1

0 1

0

0

1

1 0

(0) 0 0 0 0

0 0 0 0 0

0 ( ) 0 0 0
,

0 0

0 (1 ) 0 0 0

0 0 0 0

r g I

s I k C

M
C

k C

α

α α

λ λ θ

α π θ δ µ

α φ

θ θ

′− + 
 − − 
 − +

=  
− − − 

 − −
 

−  

 

and 

2

0 1 1

0 0

2 2

0

1

1 0

( ) 0 0 0 0

( )
0 ( ) 0

( ) ( )

* .0 ( ) 0 0 0

0 ( )

0 (1 ) 0 (1 ) ( ) 0

0 0 0 0

r B g B I

s B s B L C
B k B s U B

L C L C

M

C U B B

k C U k B B

α α

α α

λ λ θ

α πν π θ δ α πν µ

α ν α φ ν

θ θ

∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

′ − + +
 

′− 
′− − 

   
 = − + 
 − + − + −
 

− − − − + 
 − 

 

From the matrix M0, it is clear that
0

E (I,0,P,C,0,F) is a saddle point with stable manifold 

locally in the I- P -U space and unstable manifold locally in the B- direction. 

 The stability behavior of E∗
 is not obvious from M*. However, in the following 

theorem we find sufficient condition for E∗
 to be locally asymptotically stable. 

 The following theorem gives the criteria for the local stability of E* which can be 

proved by constructing a suitable Lyapunov function. 
[ 

4b. Local Stability via Lyapunov Method: 

Theorem 4.1: If the following inequalities hold:              

(4.1a) ( )

2

* *

* *0 4 01 1

42 *
*

2 2

( )( ) ( )
,

( )( )

s B L C C sg B I g B I
k C C U

L CL C

δα α
α α πν

α α

∗ ∗ ∗ ∗  ′′ ′   + +  − − − <             

                  

(4.1b)                 
( ) ( )

2* 2

1 1 0

2* *

2

( ) ( )(1 ) ( ) ( )
,

(1 )

g B I s U k g B

Ik C U

α α π θ λ θ

λα α ν δπν

∗

∗

′ ′− + − +′
<

 − − 

                   

where 

(4.1c)          
( ) *

1

4 * *

2

( ) ( )(1 )
,

(1 )

g B I s U k
C

k C U

α α

α α ν πν

∗′ ′− + −
=

 − − 

 provided (1 )k C Uα ν∗ ∗− >          

then ( , ,  ,  ,  ,  ) E I B P C U F∗ ∗ ∗ ∗ ∗ ∗ ∗  is locally asymptotically stable. 

 Proof.: See the Appendix 

 

5. Global Stability Analysis 
 

 Lemma 5.1:    The set 
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( )

( )

0

0

1 0

0

1 0

1

0

1 01

0 1

( , , , , , ) : 0 ; 0 ;

0 ;

0

o

o

o

g
I B P C U F I B L

r L

g
Q

r L
P C U

g
Q

r L
F

α

λ

α

φ

λ

αθ

θ φ

  
≤ ≤ ≤ ≤  

−  
   +   −  Ω = ≤ + + ≤ 
 
  
 +   − ≤ ≤ 
  

 

is a region of attraction for all solutions initiating in the  region 

 { }( , , , , , ) : 0, 0, 0, 0, 0, 0R I B P C U F I B P C U F= > > > > > >                   

where        
1 1

min( , , ).φ λ δ φ=    

The proof is given in Appendix.  

 Theorem 5.2: In addition to the assumptions (2.1a), (2.1b) and (2.1c), let 

, , and
m

L p q r be positive constants such that, in the region Ω ,  

(5.21) 
0

( ) , 0 ( ) , 0 ( ) , 0 ( ) .
m

L L C L L C p s U q g B r′ ′ ′≤ ≤ ≤ − ≤ ≤ − ≤ ≤ − ≤               

If  the following inequalities hold: 

(5.2a)  ( )
2

*

* *0 4 01 1

42

2 2 0

1
,

2
m

s B p C sr I r I
k C C U

LL

δα α
α α πν

α α

∗ ∗     + +
+ + − <     

      
                            

(5.2b)  ( )
2

* * 01 1

2 2 0

(1 ) ,
sr I r I

q k C U
L

φα α
α ν

α α

∗ ∗    + +
+ − − <    

     
      

(5.2c)                                    
( ) 22

0 1 01

2

( )(1 ) ( )
,

r Bk α λ θα π θ

δπν λ

− +−
<              

where   

                                                
4

(1 )k
C

α

πν

−
= , 

then E* is globally asymptotically stable with respect to all solutions initiating in the 

interior of the region Ω  . 

Proof: See the Appendix. 

 

6. Numerical Example 
 

 To explain the applicability of the result we give here numerical simulation of the 

equillibria and the stability conditions for the model. We assume 

(6.1a) 1 1 1

0 0 0

1 1 1

( ) , ( ) and ( )
1 1 1

a U b C c B
s U s L C L g B g

s U m C n B
= − = − = −

+ + +
     

where  

0 1 1 0 1 1 0 1 1
17, 1, 4, 5.8, 1, 1.02, 15, 1, 1.04s a s L b m g c n= = = = = = = = =  
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We note from the above that  

(6.1b) 
( ) ( ) ( )

1 1 1

2 2 2

1 1 1

( ) , ( ) ( )
1 1 1

a b c
s U L C and g B

s U m C n B

− − −
′ ′ ′= = =

+ + +
       

Choosing p, q and r as 1.0 each and 

1 2

1 0 1 0 0

0.1, 0.2 , 0.01, 14, 0.6, 12, 0.03, 0.03, 16, 6,

0.6, 60, 0.16, 0.08, 1.4, 1.1, 0.9, 5.1.p

k Q

C r

α α α δ π ν φ µ

θ θ π λ λ θ

= = = = = = = = = =

= = = = = = = =
 

  It can be checked that the interior equilibrium ( ), , , , ,E I B P C U F
∗ ∗ ∗ ∗ ∗ ∗ ∗ of model (2.1) 

exists and to find these values using software Mathematica 5.2, we get the equilibrium 

values  I , , , ,B P C U and F∗ ∗ ∗ ∗ ∗ ∗  are  

3.0996571211706874 ,I
∗ ′= 5.22769653540721 ,B

∗ ′= 2.169759984819481 ,P
∗ ′=  

0.6016452183000792 ,C
∗ ′= 0.0007785992306282459 ,U

∗ ′= 0.6169568625297188 .F
∗ ′=  

 It can be verified that all the conditions in Theorem (4.1) are satisfied for the above set 

of parameters and hence E∗
 is locally asymptotically stable. 

 We note from (6.1b) that if 

(6.2) 
( ) ( )

2 2 2

11 1

1 1 1
1 , 1 , 1

(1 )1 1

s L g

U C B n Bs U m C

−∂ −∂ −∂
= ≤ = ≤ = ≤

∂ ∂ ∂ ++ +
     

along with the value of the parameters chosen above then it can be checked that all the 

conditions of Theorem(5.2)  are satisfied and hence E∗
 is globally asymptotically stable. It 

is to be noted that B
*
 is less than its carrying capacity i.e. L0, as expected from the model 

study. 

         In the table-1, we find that at constant pollution control device( 6µ = ) the 

equilibrium values of resource biomass and its based industry decrease with increasing of 

the emission rate Q of the toxicant(see Fig.I  and Fig. II) while the equilibrium levels of the 

environmental and uptake concentrations of the toxicant increase. This suggests that for 

very large emission rates of the toxicant affecting resources and its dependent industries, 

there existence will be threatened. 

Table-1 

           Q         I
*
                  B

* 
             P

*     
              C

*
                    U

*                      
       F

*                        

12 3.09966 5.2277 2.16976 0.60165 0.000778599 0.616957

24 3.09955 5.2260 2.16969 0.606945 0.000785332 2.60454

36 3.09942 5.22393 2.16959 0.612246 0.000791819 4.59213

48 3.09930 5.22203 2.16951 0.617546 0.000798408 6.57972

100 3.09879 5.2138 2.16915 0.640514 0.000826808 15.1926
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           In table-2, we see that when the measure of pollution control device i.e. ( )µ increases 

in the   same ratio as Q, the equilibrium values of resource biomass and its based industry 

first decreases slowly as compared to table-1 at a certain level and then increases slowly to 

get desired level(i.e. nearly pollution free environment),also the equilibrium levels of the 

environmental and uptake concentrations of the toxicant increase slowly as compared to 

table-1. This gives that control measure (efforts) has a positive impact in the eco-system 

and industries may be saved from going to extinction. 

Table -2 

 Q       µ            I
*
              B

* 
                 P

*     
          C

*
                   U

*                      
        F

*                       
 

12 6 3.09966 5.2277 2.16976 0.60165 0.000778599 0.616957

24 12 3.09961 5.227 2.16973 0.603484 0.000780873 1.30633

36 18 3.09954 5.22458 2.16968 0.604099 0.000777202 1.53707

48 24 3.09948 5.22388 2.16964 0.604407 0.00077611 1.65262

100 50 3.09988 5.22617 2.173 0.604888 0.000830436 1.83312

 

 

 

 

 



B. Rai and Alok Malviya 

 
66 

Summary 

 In this paper, an ecological model has been proposed and analyzed to study the 

depletion of resource-based industries in a habitat, which is caused by increase in pollutant 

emission into the environment by external sources and whose concentration is augmented 

by a precursor produced by industries itself. The existence of non-trivial equilibrium has 

been discussed and its local and global stability behavior has been analyzed. Also, a region 

of attraction has been found for global asymptotic stability of the equilibrium point.  It has 

been shown that the density of the industries dependent on the resource biomass decreases 

with the increase of cumulative rate of production of the pollutants in the environment. But 

on application of environmental management system (pollution control device), the 

resource biomass density as well as density of the industries based on the resource biomass 

increases. The analysis of the non-linear stability established that the resource settles down 

to an equilibrium level, which is lower than its initial carrying capacity, the magnitude of 

which depends upon the toxicity, emission and washout rate of the toxicant. It has been 

noted that the equilibrium level decreases as the toxicity and emission rates increase but 

with the increase of washout rates of the toxicants the equilibrium level is controlled to 

some extent from going down. It has been found that the environmental management 

systems (control measures) prove as disincentive to the emitters of the pollutants and its 

emission at source is checked and reduced and the resources and resource-based industries 

can be maintained at a desired level.  

 The conclusion drawn here suggests that emission of various kinds of toxicants in the 

environment must be controlled without further delay otherwise the survival of resources 

and its dependent industries will be threatened. 
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Appendix  

  Proof of Theorem 4.1 

 Let us linearize the system (2.1) about  ( , , , , , ) E I N P C U F∗ ∗ ∗ ∗ ∗ ∗ ∗ by using the 

following transformations 

           I = I + i,  = B  + b,   P = P + p,    C = C + c,    U = U  + u,     F = F + f,B∗ ∗ ∗ ∗ ∗ ∗  

where i, b, p, c, u and f are small perturbations around E
*
. This results into 

              ( )1

( )
( ) ,

di g B
i g B I b

dt I
α

∗
∗ ∗

∗

′
′= − + +  

( )
( )

( )

( )
( )( )

*2 **
0 * * *0

2 2*
*

'
' U ,

s B L Cs Bdb
B i b k B c s B u

dt L C L C

α α∗

 
 = − − + − +
     

 

( )0
λ λ ,

dp
i p

dt
θ= − +  
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(4.1d)  
( ) ( )* *

1
( ) ,

dc
C U b p B c B u f

dt
α πν π θ δ α πν µ∗ ∗= − − + − + + −

               

 

( )( ) ( )( ) ( )* * * *1 1 ,
du

k C U b k B c B u
dt

α ν α φ ν= − − + − − +
                             

 

1 0
.

df
c f

dt
θ θ= −  

Considering the positive definite function V around E∗
, defined as 

(4.1e)   
2

2 2 2 2 2

1 2 3 4 5 6*

1 1 1 1 1 1
V C

2 2 2 2 2 2

b
C i C p C c C u C f

B
= + + + + +

                           

 

where 1 2 3 4 5 6, , , , ,C C C C C C  are positive constants, we can show that the derivative of 

V with respect to t along the linearized system (4.1d) is negative definite under the 

conditions of theorem (4.1). 

Hence V is a Lyapunov function with respect to E∗
, therefore E∗

 is locally asymptotically 

stable.
 

       Proof of lemma 5.1 

The second equation of the model (2.1) implies 

       

2

0

0

0

d
.

dt

s BB
s B

L
≤ −  

Hence   
0

 lim  sup  B( )   L
t

t
→∞

≤  

                            i.e.   
0

0 B L≤ ≤   . 

 The first equation of the model (2.1) implies 

                         

0 0 1 0

dI
g r I IL

dt
α≤ − +

 

                    

( )0 0 1 0

dI
g I r L

dt
α⇒ ≤ − −

 

                   
( )

0

0 1 0

( ) ,
g

I t
r Lα

⇒ ≤
−

 

          
( )

0

0 1 0

and hence 0 ( ) .
g

I t
r Lα

≤ ≤
−

 

Adding the third, fourth and fifth equations of the model (2.1), we have 

( )

0 1

1

dP dC dU
I P P Q P C BC

dt dt dt

UB F k BC U UB

λ λ θ π θ δ α

πν µ α φ ν

+ + = − − + + − −

+ − + − − −

 

       
0 1

( )

(1 )

I Q P C U

k BC UB F

λ λ θ π θ δ φ

α π ν µ

= + − + − − −

− − − −  
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   1
I Q P C Uλ λ δ φ≤ + − − −

                     
 where 

1 0 1
λ λ θ π θ= + −  

                                ( )1I Q P C Uλ φ≤ + − + +                              

                                ( )0

1

0 1 0

g
Q P C U

r L

λ
φ

α
≤ + − + +

−  

( )
( )

0

0 1 0

1 1

1

0 where min ,δ, .

g
Q

r L
P C U

λ
α

φ λ φ
φ

 
+  − ≤ + + ≤ =

 

  The sixth equation of (2.1) implies 

                                      
1 0

dF
C F

dt
θ θ≤ −

 

                       
( )

0

0 1 0

1 0

1

g
Q

r LdF
F

dt

λ
α

θ θ
φ

 
+  − ⇒ ≤ −

 

                          

( )
0

0 1 01

0 1

( )

g
Q

r L
F t

λ
αθ

θ φ

 
+  − ⇒ ≤

 

                

( )
0

0 1 01

0 1

and hence 0 ( ) .

g
Q

r L
F t

λ
αθ

θ φ

 
+  − ≤ ≤

 
Proof of theorem 5.2 

 Let us consider the positive definite function W around E
* 

(5.2d) 

( ) ( ) ( ) ( )
2 2 2

* *

1 2 3 4*

1 1 1
, , , , , log

2 2 2

B
W I B P C U F C I I C B B B C P P C C C

B

∗ ∗ ∗ 
= − + − − + − + − 

 

                                   ( ) ( )
2 2

* *

5 6

1 1
,

2 2
C U U C F F+ − + −

                                  

 

where C1, C2 C3, C4, C5 and C6 are positive constants to be chosen such that it becomes a 

Lyapunov function, and its domain contains the region of  attraction as (5.1) defined above.

 

On differentiating W with respect to t, we get 

( ) ( ) ( )

( ) ( )

1 2 3 4

5 6
.

dI B B dB dP dC
W C I I C C P P C C C

dt B dt dt dt

dU dF
C U U C F F

dt dt

∗
∗ ∗ ∗

∗ ∗

 −
= − + + − + − 

 

+ − + −

ɺ

 

Substituting the values of , , , , ,I B P C U Fɺɺ ɺ ɺ ɺ ɺ from (2.1), we have 
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(5.2e) 

( )[ ] ( )

( )[ ] ( )[ ]

( ) ( ) ( ) ( )

0

1 0 1 2 2

3 0 4 1

5 6 1 0

( ) ( )
( )

1 .
p

s B
W C I I g B r I IB C B B s U I k C

L C

C P P I P P C C C Q P C BC BU F

C U U k BC U UB C F F C C F

α α α

λ λ θ π θ δ α πν µ

α φ ν θ θ

∗ ∗

∗ ∗

∗ ∗

 
= − − + + − − − − 

 

+ − − − + − + − − + −

  + − − − − + − − −   

ɺ

 

After some algebraic manipulations , it can be written as

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2

* * *0

1 0 1 2 3 0 4
( )

s
W C r B I I C B B C P P C B C C

L C
α λ θ δ α∗= − − − − − − + − − + −ɺ

              ( ) ( ) ( )
2 2

* *

5 6 0C B U U C F Fφ ν θ− + − − −
  

              
( )( ) ( )1 1 2 2

( )B B I I C B I Cη α α∗ ∗ ∗ + − − + −
                                                             

 

      
        ( )( ) ( )( ) ( )* * *

2 0 4B B C C C s B C k C C Uξ α α πν∗ ∗ + − − − + − −   

              ( ) ( )* *

3I I P P C λ+ − −  

(5.2f)  
   ( ) ( ) ( ) ( )( )* * * *

2 1 5 1B B U U C U C k C Uη α ν + − − + − −   

              
( )( )* *

4 1
P P C C C π θ+ − −  

              ( )( ) ( )* *

4 5 1C C U U C B C k Bπν α+ − − + −    

              
( )( )[ ]* *

4 6 1 .C C F F C Cµ θ+ − − − +
                                                    

 

where 

          

( )

( ) ( )
( )
( )

*

*

*

* *

;
η ,

' ;

g B g B
B B

B BB

g B B B

 −
 ≠

−=

 =

 

(5.2g)                

( )
( )

( )

*
*

*

*

*

2

1 1

( ) ( )
;

C C
ξ C ,

C
;

C

L C L C
C C

L
C C

L
∗


−

 ≠
−=

 ′−
 =
  
  

 

( )

( ) ( )
( )
( )

*

*

*

1

* *

U U
; U U

U Uη U ,

' U ; U U

s s

s

 −
 ≠

−=

 =  

Choose the value of constants C1 and C2  as below 



B. Rai and Alok Malviya 

 
70 

(5.2h)  

1

1

2

2

1,

( )
.

C

B I
C

η α

α

∗

=

+
=

 

By substituting these values of C1 and C2 , equation (5.2e) reduces to 

( ) ( ) ( ) ( )( ) ( )( )
2 2 2 2

* * *01

0 1 3 0 4

2

( )

( )

sB I
W r B I I B B C P P C B C C

L C

η α
α λ θ δ α

α

∗
∗ +

= − − − − − − + − − + − 
 

ɺ

       

      ( ) ( ) ( )
2 2

* *

5 6 0C B U U C F Fφ ν θ− + − − −
 

             ( )( ) ( )( ) ( )* * *1

0 4

2

( )B I
B B C C s B C k C C U

η α
ξ α α πν

α

∗
∗ ∗

  +
+ − − − + − −  

   
 

(5.2i)
     ( ) ( )* *

3I I P P C λ+ − −  

       ( )( ) ( ) ( )( )* * * *1
1 5

2

( )
1

B I
B B U U U C k C U

η α
η α ν

α

∗  +
+ − − + − −  

   
 

              
( )( )* *

4 1P P C C C π θ+ − −  

              ( )( ) ( )* *

4 5 1C C U U C B C k Bπν α+ − − + −    

              
( )( )[ ]* *

4 6 1 .C C F F C Cµ θ+ − − − +
                                        

 

Since  

0
  L ( )  ;    0   -  s '( )   q   ;  0  - '( )   ;0 ( ) .

m
L C L U L C p g B r′≤ ≤ ≤ ≤ ≤ ≤ ≤ − ≤  

from the mean value theorem, 

                                          

( )

( )

2

1

,

,

( ) .

m

p
C

L

U q

B r

ξ

η

η

≤

≤

≤

                                                   (5.2j) 

for some positive constant Km, p ,q and r in the region Ω . 

Now Wɺ can further be written as sum of quadratics, 



A Control Model in Ecology for the Survival of Resource-Based Industries 71 

(5.2k)

( )

( ){ }

21 0 1
0 42

2 2

2 21 0
4

2

1
5

2

5

1
( ) ( )( )

2 ( )

1
( ) ( )

4 2 ( )

1 ( )( )

m

r I s r I p
W B B s B k C C U B B C C

L C L

r I s
C C C B B

L C

r I
q C k C U B B U U

C

α α
α α πν

α α

δ α

α

α
α ν

α

φ

∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗

∗
∗ ∗

∗

∗
∗ ∗ ∗ ∗

     + +
= − − + − + − − − −     

       

 + 
− − − −  

   

  +
+ + − − − −  
   

−

ɺ

( )

( )

2 2

4 4 5

2 2 20
5 0 1 3 3

2 20
4 4 1 3

2

6 0 4

( ) ( ) 1 ( )( )
2 4

( ) ( ) ( )( ) ( )
2 2

( ) ( )( ) ( )
4 2

( )

U U C B C C C B C k B C C U U

C B U U r B I I C I I P P C P P

C C C C C C P P C P P

C F F C

δ
α πν α

φ λ θ
ν α λ

δ λ θ
π θ

θ µ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗

   
 − − + − + + − − −     

   

+ 
− + − − − − + − − − − 

 

+ 
− − + − − − − 

 

− − + − + 2

6 1 4
( )( ) ( ) .

4
C C C F F C C C

δ
θ ∗ ∗ ∗ 

− − − −    
 

 

 For Wɺ to be negative definite the following inequalities must be satisfied: 

(5.2l)  
( )

( )
( )

( )

2

1 1* * * 4 0

0 42

2 2

4 ,
2 4

m

r I r I C sp
s B k C C U

L CL

α α δ
α α πν

α α

∗ ∗ + +   
 + + − <   
     

 

(5.2m) 
( )

( )( )
( )

( )

2

1 1* * 5 0

5

2 2

1 4 ,
2 2

r I r I C s
q C k C U

L C

α α φ
α ν

α α

∗ ∗ + +  
 + − − <  
    

            

(5.2n)    ( )
2

4 5 4 51 4 ,
4 2

C B C k B C C B B
δ φ

πν α α ν
  

+ − < + +     
  

                                  

(5.2o)   [ ] ( )
( )2 0

3 0 14 ,
2

C r B
λ θ

λ α
+

< −                                                                                                      

(5.2p)  ( )
( )02

4 1 34 ,
2 4

C C
λ θ δ

π θ
+

<                                                                                    

(5.2q)   [ ]
2

4 6 1 4 6 0 .C C C Cµ θ θ δ− + <                                                                                    

We rewrite the equation (5.2n) as 

(5.2r)  ( ) ( )
2 2

4 5 4 5 4 51 4 1 4
4 2

C B C k B C C k B C C B B
δ φ

πν α πν α α ν
  

− − + − < + +     
  

. 

In order to reduce the above inequality, we choose the value of constants  

(5.2s)             

( )
( )4

5

1 k α
C , ν 0

πν

C 1.

−
= ≠

=

                                                           

From (5.2o) ,we get 
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(5.2t)           
( ) ( )

[ ]
0 1 0

3 2

2
.

r B
C

α λ θ

λ

− +
<                                                          

Keeping the value of 4C in inequality (5.2n), we get 

(5.2u)                                
( )

( )

2

1

3

0

2(1 )
.

k
C

α π θ

πνδ λ θ

−
<

+
                                                       

In view of (5.2t) and (5.2u), such that  

(5.2v)                     
( )

2

1

3

(1 )k
C

α π θ

πνδ

−
< <

( ) ( )

[ ]

2

0 1 0

2

r Bα λ θ

λ

− +
 .                 

If we choose 4

6

1

µC
C

θ
= , we find that the inequality (5.2q) is automatically  satisfied. Such 

choice of C6  is always possible since  we have assumed a system in which the 

concentration level of pollutants is much more than the harmful limit and therefore the 

control measures (efforts) have been taken to reduce the concentration of pollutants in the 

environment. 

Further on keeping the minimum value of the variables on right hand sides of the 

inequalities, (5.2l) and (5.2m), we get  

(5.2w)   ( )
2

* * * 4 01 1

0 42

2 2 0

1
,

2
m

C sr I r Ip
s B k C C U

LL

δα α
α α πν

α α

∗ ∗     + +
+ + − <     

      
 

(5.2x)                 ( )( )
2

* * o1 1

2 2 0

q 1 k αC νU
sr I r I

L

φα α

α α

∗ ∗    + +
+ − − <    

     
,       

 where       

                                
( )

4

1 k
C

α

πν

−
=  .    

Thus we find the inequalities (5.2v), (5.2w) and (5.2x), which are same as mentioned in the 

Theorem 5.2. Hence W is Lyapunov function with respect to E
*
 whose domain contains Ω  

and therefore E
* 
is non-linearly stable and hence the theorem. 
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