

Vol. 12 (2008) Journal of International Academy of Physical Sciences pp. 43-54

Reliability Improvement of the Computing System

 Through Matrix Partitioning

Anju Khandelwal

Department of Mathematics

S.R.M.S. Women’s College of Engineering and Technology, Bareilly, India

E-mail : dranjukhandelwal@yahoo.co.in, dranjukhandelwal@rediffmail.com

(Received September 22, 2008)

Abstract: Improving the performance of the computing systems is a major and

challenging problem for the researchers in this wide area of research. It is almost

impossible that the computing system has to execute only as many tasks as the

number of processors available in the system. That means the number of tasks,

which are to be executed on the computing systems, shall be the more as

compared to the number of processors in the systems. The problem of execution

of "m" tasks to "n" processors (m > n) on a computing system is addressed here

through an efficient task allocation policy for the task execution on a computing

system. The present paper is based on the consideration of Execution Reliability

and Communication Reliability of the tasks to the processors. The execution

reliabilities of the tasks on different processors have been taken into consideration

while preparing the algorithm to such a case. This research paper contains the

computational algorithm of the approach and its implementation. This problem is

capable to deal all such real life situations, where the tasks are more than the

number of processors. Further this approach can be extended to achieve the true

optimal results. The developed algorithm is coded in C++ and implemented on the

several sets of input data, to test the effectiveness and efficiency of the algorithm.

Keywords: Distributed systems, assignments, execution reliability,

communication reliability.

2000 Mathematics Subject Classification No.: 90C08

1. Introduction

 Reliability analysis for any Distributed Computing System is the current necessity and

most important area of research. There are number of ways to improve the reliability of the

distributed computing system. Optimizing the reliability through task allocation is one of

the problems in this category. Some heuristics techniques may also provide some good

solutions. Sometimes correctly processing of the task by any processor is on top priority

irrespective of time or cost constraints, that is, complete processing of task is necessary to

achieve a goal where other constraints are secondary. The literature survey reveals that only

few researchers devoted their research work in this area so that this area has to be taken into

consideration. Kuo et al
1
 presented an annotated overview of system reliability optimization

in which he has suggested heuristics, meta-heuristics algorithm, exact method for reliability

Anju Khandelwal 44

redundancy allocation, multi objective optimization and also assignment of interchangeable

components in reliability systems. The exact solutions regarding such problem are not

necessarily desirable because exact solutions are very difficult and even when they exist

there utility is on boundary line. Therefore the majority of research work in this area is

devoted to heuristic and meta-heuristic solutions. The other two similar algorithms have

been given by Peng, Shin and Abdel
2
, Sagar and Sarje

3
 and B. Shirazi, M. Wang and G.

Pathak
4
. Peng, Shin and Abdel

2
 used matrix reduction technique. According to the criteria

given therein, a task is selected randomly to startwith and then assigned to a processor.

2. Assumptions

The completion of a program from computational point of view means that all related

tasks have got executed and the final output has been generated after integrating the

respective outputs of individual programs.

1. The number of tasks to be allotted is more than the number of processors.

2. Some of the tasks have restrictions for being allocated on some particular

processor(s) because of the non-availability of desired facilities, which may

include access to particular peripheral device, and high-speed arithmetic capability

of the processor. The execution reliability of such tasks is taken to be zero, on

those processors where these tasks cannot be executed.

3. Whenever two or more tasks are assigned to the same processor, the

communication cost between them is assumed to be zero.

3. Problem Statement

Let the given system consists of a set of n processors
1 2

{ , ,........., }
n

P p p p= , and a set

of m tasks
1 2

{ , ,............., }
m

T t t t= . The present problem is based on the consideration of

Execution Reliability and Communication Reliability of the tasks to the processors. The

Execution Reliability of individual tasks corresponding to each processor is given in the

form of matrix ERM(,) of order m n× and Communication Reliability is taken in the square

matrix CCM(,) of order m respectively. A procedure to assign the tasks to the processors of

the Distributed Computing systems is to be designed in such a way that the overall

reliability is to be optimizing under the pre-specified constraints and none of the tasks get

unexecuted. The reliability functions to measure ER and CR are then formulated. Further

function to obtain Ereliability has been derived for the said purpose. The main objective of

this problem is to maximize the total program execution reliability by allocating the tasks

optimally. Keeping in view we suggested a modified method to assign all the tasks as per

the required availability of processors so that none of the tasks get remains unexecuted and

the present approach does not require to add dummy processors.

4. Proposed method

Let the given system consists of a set of n processors
1 2

{ , ,........., }
n

P p p p= , and a set

of m tasks
1 2

{ , ,............., }
m

T t t t= . The present problem is based on the consideration of

Execution Reliability and Communication Reliability of the tasks to the processors. The

Execution Reliability of individual tasks corresponding to each processor is given in the

Reliability Improvement of the Computing System Through Matrix Partitioning 45

form of matrix ERM(,) of order m n× and Communication Reliability is taken in the square

matrix CCM(,) of order m respectively. Since the number of tasks are more than the

number of processors, so that we divide the problem into sub balance problems. First of all

obtain the product of each row and each column except the position where the reliability is

zero (zero reliability should be kept aside with the product of row or column) from the

ERM(,) and store the results into Product_Row() and Product_Column(), each of them are

one dimensional arrays. Select the first set of tasks, (this set of tasks shall contain only as

many tasks as the number of processors) on the basis of maximum reliability against the

tasks in the Product_Row() array. Store the result into ERM (, ,) a two dimensional array.

Repeat the process until remaining tasks are either less than or equal to the number of

processors. If the tasks are equal to the processors then it will become the last sub problem,

else to form the last problem we have to delete the column (processor) from ERM(, ,) on

the basis of Product_Column() array i.e. this set shall contain only as many processors as

number of tasks left, so that we delete the processors having lesser reliability in the

Product_Column() array. Convert matrices of each sub problem into execution unreliability

matrix namely, EURM(, ,) by subtracting each element of ERM(, ,) from one. For

allocation purpose a modified version of row and column assignment method devised by

Kumar et al
5
 is employed which allocates a task to a processor where it has minimum

execution unreliability. The communication unreliability of those tasks, which are allocated

on the same processor, becomes one. For each sub problem we calculate the exaction

reliability of each processor and store the result in a linear array PER(j) and also

communication reliability PCR(j) of the distributed computing system, where j= 1,2,…n.

The overall assignment reliability [Ereliability] is expressed as products of the execution

reliabilities and communication reliabilities of all the tasks as follows:

n

ij
1i 1

ER(j) { x }
n

ij
j

P er
==

= ∑∏ ;

m

ij
1i 1

CR(j) { y }
n

ij
j

P cr
==

= ∑∏

{ } { }
1 11 1

Ereliability *
n nn n

ij ij ij ij
j ji i

er x cr y
= == =

 
= ∑ ∑∏ ∏ 
 

where

th th
 1, if task is assigned to processor

0, otherwise

y
ij

i j=




and

1, if the task assigned to processor i communicate

 with the task assigned to processor

0, otherwise

y
ij

j=




5. Computational Algorithm

The method discussed in the problem is to determine the task allocations in distributed

processing environment depend upon the following components:

1. Determine the initial allocation

Anju Khandelwal 46

2. Determine the final allocation

3. Compute the total optimal system reliability.

6. Algorithm

To give an algorithmic representation to the technique mentioned in the previous

section, let us consider a system in which a set of m tasks 1 2{ , ,............., }mT t t t= is to be

executed on a set of n available processors 1 2{ , ,........., }nP p p p= .

Step-1:

 Input: m, n. ERM (,), CRM(,)

Step-2:

Obtain the product of each row of the ERM(,) in such a way that, if any

reliability(ies) is (are) zero then keeping it aside along with sum of that row

(just to avoid the condition sum ER * 0 = 0). Store the results in one-

dimensional array Product _Row (,) of order m.

Step-3:

 Obtain the product of each column of the ERM (,), in such a way that if any

reliability (ies) is (are) zero then keeping it aside along with product of that

column (just to avoid the condition ER * 0 = 0). Store the results in one-

dimensional array Product _Column (,) of order n.

Step-4:

 Partition the execution reliability matrix ERM (,) of order m x n to sub

matrices such that the order of these matrices become square i.e. number of

row should be equal to number of column. Partitioning to be made as

mentioned in the following steps.

Step-4.1:

Select the n tasks on the basis of Product _Row (,) array i.e. select the ‘n’

tasks corresponding to most maximum product to next maximum

product, if there is a tie select arbitrarily. (For the cases in which product

is ER * 0 = 0, maximum value depends only on ER and the impact of

zero is to be neglected).

Step-4.2:

Store the result in the two dimensional array ERM (, ,) to form the sub

matrices of the sub problems.

Step-4.3:

If all the tasks are selected then go to step 4.7 else steps 4.4

Step-4.4:

Repeat the step 4.1 to 4.3 until the number of tasks become less than n.

Step-4.5:

Select the remaining task say r, r < n, select the r processors on the basis

of Product_ Column (,) array i.e. the processors corresponding to the

most maximum product to next maximum, if there is a tie select

Reliability Improvement of the Computing System Through Matrix Partitioning 47

arbitrarily (for the cases in which product is ER * 0 = 0, maximum value

depends only on ER and the impact of zero is to be neglected).

Step-4.6:

Store the result in the two dimensional array ERM (, ,), which is a last

sub problem.

Step-4.7:

List of all the sub problems formed through Step 4.1 to 4.6 and repeat

step 5 to step 13 to solve each of these sub problems.

Step-4.8:

Convert all execution reliability matrices of each sub problem into the

execution unreliability matrices by subtracting each entry by one in all

execution reliability matrices.

Step-5:

Find the minimum of each row of NEURMI (, ,), and replace it by 0.

Step-6:

 Find the minimum of each column of NEURM(, ,), and replace it by 0.

Step-7:

Search for a row in NEURM, which has only one zero and assign the task(s)

corresponding to this position. Add one to the counter that is nar = nar + 1 and

also store this position.

Step-8:

Search for a column in NEURM, which has only one zero and assign the

task(s) corresponding to this position. Add one to the counter that is nar = nar

+ 1 and also store this position.

Step-9:

Check whether nar = n if not then pickup an arbitrary 0 and assign task(s)

corresponding to this position. Add one to the counter that is nar = nar + 1 and

also store this position, else, Check column (s) position of 0’s in unassigned

row(s). Check the row(s) for any previous assignment in the corresponding

column(s). Find the minimum of the entire elements for the remaining rows

and replace it zero.

Step-10:

 Evaluate Execution Reliability.

Step-11:

 Evaluate Communication Reliability.

Step-12:

Execution Reliability (Ereliability) are thus calculated as:

Ereliability = ER * CR

Step-13:

 Stop.

Anju Khandelwal 48

7. Implementations

 Example-I

Consider a system consisting of a set T = {t1, t2, t3, t4,} of 4 tasks and a set P = {p1, p2,

p3} of 3 processors,

Step-1: Input: 4, 3

1 2 3

1

2

3

4

0.997 0.996 0.994

0.993 0.998 0.992
(,)

0.998 0.991 0.994

0.997 0.993 0.998

p p p

t

t
ERM

t

t

=
;

1 2 3 4

1

2

3

4

0.000 0.994 0.996 0.995

0.994 0.000 0.992 0.993
(,)

0 .996 0.992 0.000 0.992

0.995 0.993 0.992 0.000

t t t t

t

t
CRM

t

t

=

 Step-2:

Obtain the product of each row and column of ERM (,), i .e. the products of each row

and each column are as:

1 2 3 4

Product_Row()
0.9870539 0.9830858 0.9830838 0.9880409

t t t t
=

1 2 3

P ro d u c t_ C o lu m n ()
0 .9 8 5 0 7 6 8 0 .9 7 8 1 6 6 4 0 .9 7 8 1 7 1 4

p p p
=

Step-3:

We partitioned the matrix ERM (,) to define the first sub problem ERMI (, ,) by

selecting rows corresponding t1, t2, t4 on the basis of Product_Row() array and on the

basis of the Product_Column() array, by deleting columns corresponding to p2, p3 then

after selecting the remaining one task t3 to form the last sub problem ERMII (, ,), as

there was only one task, for which we required only one processor. So that the

modified matrices are as;

Sub Problem-I:

1 2 3

1

2

4

0.997 0.996 0.994
(,,)

0.993 0.998 0.992

0.997 0.993 0.998

p p p

t
ERMI

t

t

=

and Sub Problem-II:

Reliability Improvement of the Computing System Through Matrix Partitioning 49

1

3

(, ,)
0.998

p
ERMII

t

 Obtain the unreliability matrices for ERMI (,,) and ERMII (,,) as,

1 2 3

1

2

4

0.003 0.004 0.006
(, ,)

0.007 0.002 0.008

0.003 0.007 0.002

p p p

t
EURMI

t

t

=

1

3

(, ,)
0.002

p
EURMII

t

Step-4 & 5:

On applying modified Hungarian method devised by Kumar et al
5
 to assign the tasks,

on the basis of min {ri} and min {cj} from unreliability matrices for every i and j. We

put rij = 0 and cij = 0, for every i and j. On applying this to all sub problems, the

modified matrices for each sub problem are mentioned below:

1 2 3

1

2

4

0.000 0.004 0.006
(, ,)

0.007 0.000 0.008

0.003 0.007 0.000

p p p

t
EURMI

t

t

=

1

3

(, ,)
0.000

p
EURMII

t

Step-6, 7&8:

After implementing assignment process, the solution set of the each sub problem, the

allocation is thus obtained.

 Solution for the Sub Problem-I:

1 1

2 2

4 3

Pr

0.997

0.998

0.998

Tasks ocessors ER

t p

t p

t p

→

→

→

→

 Solution for the Sub Problem-II:

3 1

Pr

0.998

Tasks ocessors ER

t p

→

→

Step-9:

After implementing the process, we obtain the following set of complete assignments

alongwith execution reliabilities of each processor.

Anju Khandelwal 50

1 1

2 2

3 1

4 3

Pr

0.997

0.998

0.998

0.998

Tasks ocessors ER

t p

t p

t p

t p

→

→

→

→

→

Step-10:

 ER : = 0.99102990

 CR : = 0.96645590

 Ereliability : = 0.95778660

Step-11:

 Stop.

Example-II

 Now consider a system which consists of a set T = {t1, t2, t3, t4, t5} of 5 tasks and a

set P = {p1, p2, p3} of 3 processors, where,

 Step-1: Input: 5, 3

1 2 3

1

2

3

4

5

0.997 0.996 0.994

0.993 0.998 0.992
(,)

0.998 0.991 0.994

0.997 0.993 0.998

0.992 0.995 0.996

p p p

t

t
ERM

t

t

t

=

1 2 3 4 5

1

2

3

4

5

0.000 0.994 0.996 0.995 0.993

0.994 0.000 0.992 0.993 0.995
(,)

0.996 0.992 0.000 0.992 0.996

0.995 0.993 0.992 0.000 0.992

0.993 0.995 0.996 0.992 0.000

t t t t t

t

t
CRM

t

t

t

=

Step-2:

Obtain the product of each row and column of ERM (,), i .e.

1 2 3 4 5

Product_Row
0.9870539 0.9830858 0.9830838 0.9880409 0.9830918

t t t t t
=

1 2 3

P ro d u c t _ C o lu m n
0 .9 7 7 1 9 6 2 0 .9 7 3 2 7 5 6 0 .9 7 4 2 5 8 7

p p p
=

Reliability Improvement of the Computing System Through Matrix Partitioning 51

Step-3:

We partitioned the matrix ERM (,) to define the first sub problem ERMI (,) by

selecting rows corresponding to t1, t4, t5 and second sub problem ERMII (,) by

selecting rows corresponding to the tasks t2, t3 and by deleting columns

corresponding to p2. So that the modified matrices for each sub problems are as;

 Sub Problem-I:

1 2 3

1

4

5

0.997 0.996 0.994
(, ,)

0.997 0.993 0.998

0.992 0.995 0.996

p p p

t
ERMI

t

t

=

and Sub Problem-II:

1 3

2

3

(, ,) 0.993 0.992

0.998 0.994

p p

ERMII t

t

=

Obtain the unreliability matrices for the sub problems ERMI(,) and ERMII(,) as,

1 2 3

1

4

5

0.003 0.004 0.006
(, ,)

0.003 0.007 0.002

0.008 0.005 0.004

p p p

t
EURMI

t

t

=

1 3

2

3

(, ,) 0.007 0.008

0.002 0.006

p p

EURMII t

t

=

Step-4 & 5:

On applying modified Hungarian method devised by Kumar et al
5
 to assign the tasks,

on the basis of min {ri} and min {cj} from unreliability matrices for every i and j.

We put rij = 0 and cij = 0, for every i and j. On applying this to all sub problems, the

modified matrices for each sub problem are mentioned below:

1 2 3

1

2

4

0.000 0.000 0.006
(, ,)

0.003 0.007 0.000

0.008 0.005 0.000

p p p

t
EURMI

t

t

=

1 3

2

3

(, ,) 0.000 0.008

0.000 0.000

p p

EURMII t

t

=

Anju Khandelwal 52

Step-6, 7&8:

 After implementing assignment process, the allocation is thus obtained.

1 2

2 1

3 3

4 1

5 3

Pr

0.996

0.993

0.994

0.997

0.996

Tasks ocessors ER

t p

t p

t p

t p

t p

→

→

→

→

→

→

Step-9:

 ER : = 0.9762239

 CR : = 0.9501149

 Ereliability : = 0.9275249

Step-10:

 Stop.

8. Conclusions

The algorithm presented in this paper is capable of maximizing the overall reliability of

Distributed Computing System through task allocation. In distributed computing system,

tasks are allocated in such a way that their individual reliability of processing is optimized

as well as the overall reliability is improved. In this approach not only that the loads of each

processor get equally balanced and none of the tasks gets unprocessed so that requirement

for adding dummy processor becomes meaningless in our approach. Our approach provides

an optimal solution for assigning a set of “m” tasks of a program to a set of “n” processors,

where m > n in a computer communication systems that maximizes the overall reliability of

the system and the load of all allocated tasks on all the processors equally balanced. For the

example-I, the execution reliability on different processors has been obtained. Also the

communication reliability of the computer communication system is mentioned in the

following table:

Processors of the Distributed Computing Systems p1 p2 p3

Execution reliability of each processor

 PER (,)

0.995006 0.998000 0.998000

Communication reliability of DCS 0.96645590

Total reliability of DCS [Ereliability(,)] 0.95778660

The final results of example-I are as:

1 3 1

2 2

4 3

Pr

*

0.99102990 0.96645590 0.95778660

Tasks ocessors ER CR Ereliability

t t p

t p

t p

→

→

→

→

Reliability Improvement of the Computing System Through Matrix Partitioning 53

For the example-II, the execution reliability on different processors has been obtained.

Also the communication reliability of the distributed computing system is mentioned in the

following table:

Processors of the Distributed Computing

Systems

p1 p2 p3

Execution reliability of each processor

 PER (,)

0.990024 0.996000 0.990021

Communication reliability of DCS 0.9501149

Total reliability of DCS [Ereliability(,)] 0.9275249

The final results of Example-II are as:

1 2

3 5 3

2 4 1

Pr

* 0.9762239 0.9501149 0.9275249

*

Tasks ocessors ER CR Ereliability

t p

t t p

t t p

→

→

→

→

The method is presented in computational algorithmic form and implemented on the

several sets of input data to test the performance and effectiveness of the algorithm. The

problem discussed in this paper, would be useful to the network system designer working in

the field of distributed computing systems. The developed method is programmed in C++

and implemented the several sets of input data to test the effectiveness and efficiency of the

algorithm. It is recorded that the method is suitable for arbitrary number of processors with

the random program structure.

The present algorithm mentioned in this paper provides the optimal solution for

improving the reliability. This problem deals with the performance on the bases of

maximizing reliability. However the future scopes for the further researcher is that some

model (s) can be developed which shall be capable to improve the performance of the

distributed computing systems.

References

1. Way Kuo and V. Rajendra Prasad, An Annotated Overview of System – Reliability

Optimization, IEEE Transactions on Reliability, 49-2 (2000) 176-187.

2. Dar-Tezen Peng, K. G. Shin and Zoher T. F. Abdel, Assignment Scheduling

Communication Periodic Tasks in Distributed Real Time System, IEEE Transactions on

Software Engineering, SE-13 (1997) 745-757.

3. B. Shirazi, M. Wang and G. Pathak, Analysis and Evaluation of Heuristic methods for

Static Task Scheduling, Journal on Parallel and Distributed Computing, 10 (1990) 222-

223.

4. G. Sagar and A. K. Sarje, Task Allocation Model for Distributed System, International

Journal of Systems Sciences, 22-9 (1991) 1671-1678.

5. V. Kumar, M. P. Singh and P. K. Yadav, A Fast Algorithm for Allocating Task in

Distributed Processing System, Proceedings of the 30th Annual Convention of Computer

Society of India, Hydrabad (AP), India during Nov. 8-11, 1995, 347-358.

Anju Khandelwal 54

6. Cheol - Hoon Lee, Kang G. Shin, "Optimal Task Assignment in Homogeneous Networks,"

IEEE Transactions on Parallel and Distributed Systems, 8-2 (1997) 119-129.

7. A.O. Charles Elegbede, Chengbin Chu, Kando H. Adjallah and Faronk Yalaoui, Reliability

Allocation through Cost Minimization, IEEE Transactions on Reliability, 52-1, (2003) 106-

111.

8. Avanish Kumar, Optimizing for the Dynamic Task Allocation, Proceedings of the III

Conference of the International Academy of the Physical Sciences held at Allahabad, 1999,

281-294.

