
ISSN 0974 - 9373 
 

Vol. 26 No. 3 (2022)           J. Int. Acad. Phys. Sci.   pp. 225-235 

 

 

 
Asymptotic Behaviour of Free Convective Boundary  

Layer Flows of Newtonian Fluids Past a Vertical  

Flat Plate with Suction/Injection  
 

 

S. V. Palmur  
Department of Mathematics, Punyashlok Ahilyadevi Holkar Solapur University 

Solapur, Maharashtra, India  
Email: sandhyapalmur@gmail.com  

 

I. M. Chandarki 
          Department of General Science and Engineering 

N.B. Navale Sinhgad College of Engineering, Solapur, Maharashtra, India 
E-mail: imchandarki.nbnscoe@gmail.com  

 

B. B. Singh 
Department of Mathematics, Dr. Babasaheb Ambedkar Technological University 

 Lonere, Raigad Maharashtra, India. 
E-mail: brijbhansingh@yahoo.com   

 
(Received November 11, 2021, Revised August 31, 2022, Accepted Sept 03, 2022) 

 
Abstract: This paper deals with the asymptotic behaviours of the 

solutions of Falkner-Skan equations governing the free convective 

boundary layer flows of Newtonian fluids past a vertical flat plate with 
suction/injection as the independent variable η tends to infinity; the 

discussion being based on the asymptotic integrations of second order 

linear differential equations. It has been found that the principal solutions 

exhibit asymptotic nature as η→∞, whereas corresponding linearly 

independent solution does not.  
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Nomenclature: 

u, v:  Velocity components in the x -axis 

and y -axis, respectively (m/s) 
𝜐 =

µ

ρ
 : Kinematic viscosity of the fluid  

µ: Dynamic viscosity ρ: Density of the fluid 

g: Acceleration due to gravity T : Temperature of the fluid in the 
boundary layer 

𝑇∞: Ambient Temperature of the fluid in 
the boundary layer 

𝑇𝑤: Wall Temperature of the boundary 
layer 
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𝐶𝑝: Specific heat of the fluid 𝑉𝑤(𝑥): Suction/Injection velocity 

K:  Thermal conductivity of the fluid A:  Dimensional constant 

a: Constant B: Dimensional constant 

b: Constant f : Non dimensionless stream function 

𝑓𝑤: Suction/Injection Parameter L : Characteristic length 

m: Temperature variation index at the wall 𝑃𝑟: Prandtl number 

ϕ: Coefficient of thermal expansion of the 

fluid at temperature 𝑇∞ 

η: non-dimensional co-ordinate 
perpendicular to the wall 

θ: non-dimensional temperature ψ: Dimensional stream-function 

α: Thermal diffusivity ε : A constant 

 

1. Introduction 
 

Free convective phenomenon has been the subject of extensive research. 

The importance of this phenomenon is due to its enhanced concern in science 

and technology about buoyancy induced motion in the atmosphere, in bodies 

such as earth. Consequently, free convective flow has been extensively 

studied by Jaluria1 and Senoy and Mashelkar2. After that the free convective 

laminar boundary layer flow of power-law fluids have been studied by Sahu 

and Mathur3.The study of the asymptotic behaviours of the solutions of the 

equations governing the problems of the physical significance in boundary 

layer theory is an interesting feature of discussion in fluid-mechanics. One of 

the most important problems in the study of the differential equations or of 

differential-difference equations and their applications is that of describing 

the nature of the solutions for large positive values of the independent 

variables and this purpose is completely fulfilled by the study of the 

asymptotic behaviours. Thus, the asymptotic behaviour plays a particular 

attention towards a desired problem for finding conditions under which a 

solution approaches zero as the independent variable tends to infinity, or is 

small for all independent variables, or is bounded as the independent variable 

tends to infinity. Because of the above facts, the study of the asymptotic 

nature of the solutions of the Falkner-Skan4 equations governing the steady 

two-dimensional flow of a slightly viscous incompressible fluid past a wedge 

was initiated by Hartman5 and Later followed by Singh6-7,Singh and Singh 8-

11,Singh and Kumar12,Singh and Verma13, Tiryaki and Yaman14, Brighi and 

Hoernel15 etc. 

The objective of the present paper is to study the asymptotic nature of the 

solutions of equations which govern free convection in boundary flows of 

Newtonian fluids past a vertical flat plate by taking into account the effects 

of suction/injection. The discussion here is based on the asymptotic 

integrations of second order linear differential equations. 
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Sharma et.al16 investigated the effects of velocity slip and thermal slip on 

MHD mixed convective flow along vertical porous plate in the presence of a 

non-uniform magnetic field.  Sharma and Sinha17 applied Runge-Kutta fourth 

order scheme with shooting technique for MHD Mixed Convective Slip Flow, 

Heat and Mass Transfer along a Vertical Porous Plate also Shekar and 

Shankar18 analyzed the effect of a suction and Soret number on heat and mass 

transfer MHD flow past an exponentially stretching sheet with the heat 

source/sink. Using similarity transformation, the system of PDEs is changed 

into a system of nonlinear ODEs, which was then solved numerically. 

Archana Shukla19 studied an unsteady hydromagnetic free convection flow 

and mass transfer of an elastic viscous fluid in a rotating porous medium. 

 

2. Formulation of the Problem 
 

The equations governing the two-dimensional plane flow of a Newtonian-

fluid in the laminar boundary region close to a vertical flat plate are: 
 

 
Figure1. Schematics of the problem  

 

(2.1)         
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0         
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(2.2)     𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐 (

𝜕2𝑢

𝜕𝑦2
) + 𝑔𝛽(𝑇 − 𝑇∞)      

(2.3)     𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝐾

𝜌𝑐𝑝
(

𝜕2𝑇

𝜕𝑦2
)       

The boundary conditions are 

(2.4)  y = 0:  𝑢 = 0, 𝑣 = 𝑉𝑤(x), T = 𝑇𝑤(x), 𝑦 ∶  u =  0, T = 𝑇∞  

Let 

                𝑢 = 
𝑦
 , 𝑣 = − 

𝑥
,  

                = A𝑥𝑎 f(),     = B y xb, 

(2.5)           = 
 T − 𝑇∞

 𝑇𝑤(x) −𝑇∞
   ,  𝑇𝑤 −T = Nxm

, 

               N =
 𝑇𝑤 (0) − 𝑇∞

 𝐿𝑚         

Substituting the expressions (2.5) in equations (2.1)-(2.4), we obtain 

(2.6)  A2 B2  𝑥2𝑎+2𝑏−1 (a+b) 𝑓 ′2– af f =  A B3 f 𝑥𝑎+3𝑏  + g Nxm  

(2.7)      ABNxa+b+m-1 m − af =  N B2 xm+2b       

Since equations (2.6) and (2.7) must hold for all values of x if similarity is to 

exist, we have 

(2.8)           2a +2b –1= a + 3b = m, 

             a + b + m – 1 = m + 2b  

Solving equation (2.8), we get  

      a =
 2

 3
 ,  b = m = −

 1

 3
 

Thus, we have 

              = A 𝑥
 2

 3 f(),  = By𝑥− 
1

 3  

(2.9)       Tw −T = N𝑥− 
1

 3 u = Ab𝑥  
1

 3 f,      

             V= −A𝑥− 
1

 3 (
 2

 3
 f – 

1

 3
 f) 

             T− T = N𝑥− 
1

 3  () 
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With  this, we note that 𝑉𝑤(𝑥) =
 2

 3
 A𝑥− 

1

 3 fw , where  𝑓𝑤  = f (0). 

The equations determining  f and  are  

(2.10)          f + 
2

 3
 f f − 

1

 3
𝑓′2 +  =0      

(2.11)       +(
2 𝑃𝑟

3
)  f + (

 𝑃𝑟 𝑓 ′

3
)  = 0 ;              

subject to the conditions 

(2.12)        = 0 : f = fw , f=0,  =1 

            =  : f = 0,  =0        

where the primes denote differentiation w. r. t. ‘’. 

The equations (2.10)–(2.12) have been obtained after properly choosing 

the dimensional constants A, B  and   in the following manner : 

              A =  (gN)1/4 

(2.13)             B  = -1/2 (gN)1/4        

                       = 
𝐾

𝐶𝑝
  

(2.14)             𝑃𝑟 =



 = 

µ 𝐶𝑝

𝐾
        

 

3. Mathematical Analysis 
 

If f() is the solution of (2.13), let us put  

(3.1)               h () =  +f     

where  is a constant. Then h () satisfies the equation 

(3.2)             h +
2

3
 f h +

( −
1

3
 𝑓′2) 

( + f ) 
ℎ  = 0     

In order to eliminate the middle term in (3.2), let us put    

(3.3)            h= x exp (−
1

3
 ∫ f(s) ds

𝜂

0
)      

so that x()  satisfies 

(3.4)              x − Q() x = 0,                             

where  
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(3.5)    Q() =  
1

9
 𝑓2 + 

1

3
 f  + 

(
3

1
𝑓′2  − )

( + f  )
 =

1

9
 𝑓2 [

1

3
 
𝑓′

𝑓
+ 9

(
1

3
 𝑓′2 − )

𝑓2 (+ f )
],   

Thus 

            Q () = 
1

3
 f+ 

2

9
  f f + 

2

3
 𝑓′ 𝑓′′−′

[𝑓′2  ( + f  )]
 − 

(
1

3
 𝑓′2−)𝑓′′

( + f  )2  

and by (2.13), 

Q ()  = [
1

3
+

2

3
 𝑓′

( + f )
 +

1

3
 𝑓′2− 

( + f )2
] [−

2

3
𝑓 𝑓′′ −   +

1

3
𝑓′2] + 

2

9
 𝑓′2  + 

2

9
  f f    

                   + 
(

2

3
 𝑓′′− )

( + f )
  −  

f (
2

3
 𝑓′ 𝑓′′− ′)

 ( + f )2
  + 

2(
1

3
 𝑓′2− )𝑓′′2

 ( + f )3
 . 

From (2.12), f  0 as  . Hence f C for large  , where C is a constant. 

Also f  () 0 for all    (0,) by Hartman20  (P.521).  Hence for large , 

there exists a constant C 0 such that  

Q′
2

𝑄5/2  C f 2 

|𝑄′′|

𝑄3/2  C  f  

In addition, ∫ 𝑓′′2 d
∞

 and ∫ f  d
∞

 converge absolutely as f  ()  0  as   

 . 

Hartman20 (P.521), so that  

                        


Q′2

𝑄5/2
 d   

                    and  


|𝑄′′|

𝑄3/2
 d   .  

Hence the differential equation (3.4) has the principal solution x() satisfying, 

as  , 

(3.6)   x  C𝑄
−1

4  ()  exp (− 


2/1Q (s)  ds );        

where C   0 is a constant, while linearly independent solutions satisfy 
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(3.7)      x  C𝑄
−1

4  () exp ( 


2/1Q (s)  ds );    

From (3.5) and f  C, 

Q1/ 2()  =  
1

3
 f +  

1

2
 (

𝑓′

𝑓
)  + 

3

2
[

(
1

3
𝑓′2− )

 ( + f  )
] + o (1), 

Q1/ 4 ()  (
1

3
 𝐶)

1/2

; 

Therefore, solutions (3.6) and (3.7) becomes 

x  C1 exp (− 


[
1

3
 f + 

1

2
(

𝑓′

𝑓
) + 

3

2

(
1

3
  𝑓′2−)

( + f  )
]  ds ); 

x  C1 exp ( 


[
1

3
 f +  

1

2
(

𝑓′

𝑓
) +  

3

2

(
1

3
  𝑓′2−)

( + f  )
]  ds ); 

where C1   0,  . 

In view of (3.3), the equation (3.2)  has  the  principal  solution  satisfying 

(3.8)        + f   = hC1 exp (− 


[
2

3
 f +  

1

2
(

𝑓′

𝑓
) +  

3

2

(
1

3
  𝑓′2−)

( + f  )
]  𝑑𝑠) 

C1 0, while linearly independent solutions satisfy  

(3.9)        + f   =  hC1 exp ( 


[
1

2
(

𝑓′

𝑓
) +  

3

2

𝑓(
1

3
  𝑓′2−)

( + f  )
]  𝑑𝑠) as      . 

Taking f    C and f   0 as   , solutions (3.8) and (3.9) become 

(3.10)             + f   = h  C2 exp (−
2

3
 𝐶),      

(3.11)             + f   =  h    C2;        

C2   0 as     . 

Similarly, the principal solution satisfying (2.14) will be 

(3.12)              C3 exp (−
2

3
 𝑃𝑟  𝐶),       

C3  0, while linearly independent solution will satisfy 

(3.13)                 C3;         

C3  0, as    . 
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4. Results and Discussion  

 

 For studying the asymptotic behaviour as the similarity variable ‘’ 

tends to infinity, we shall   impose the conditions f,  0 as   on 

the LHS of the principle and independent solutions. If the LHS behave 

in the similar fashion as the RHS do, the solutions will exhibit 

asymptotic nature as . 

 The LHS of (3.10) tends to  as , where as its RHS tends to 

zero as  . Hence if we choose  in such a way that it is very near 

to zero but not zero, the principle solutions (3.10) show asymptotic 

nature as . 

 Similarly, if we apply the condition f 0 as  on the LHS of 

(3.11), we get . The RHS of (3.11) is C2  0. So if the constant  = C2 

 0, the independent solution (3.11) will also satisfy asymptotic nature 

as . Since  is an arbitrary constant, hence it can always be chosen 

in such a way that = C2. As a result, the independent solution (3.11) 

will also satisfy asymptotic characteristics as . 

 
Figure 2. Variation of velocity profiles 

  

If we apply the condition 0 as  on the LHS of (3.12), it tends 

to zero.  RHS of (3.12) also tends to zero as  .  So, the principle 

solution (3.12) will show asymptotic nature as . On the other hand, 
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LHS of the independent solutions (3.13) tends to zero but its RHS is C3 

 0. Hence (3.13) will not show the asymptotic behavior as . Hence 

(3.13) will not show the asymptotic behaviour as .  

In the Figure 2, the velocity profiles have been for different values of 

C, C2 and  as . Figure 3 depicts Variation of temperature profiles 

for C3 = 1and different values of  𝑃𝑟 . The decrease in dimensionless 

velocity has been observed with increasing values of C , C2  and . It is 

noteworthy to note that C= C2 and C3= 1 is obtained by relations 

(2.12). 

 

 
Figure 3. Variation of temperature profiles 

 

5. Conclusions 
 

The asymptotic integration method to find out the solutions of nonlinear 

boundary layer equations is the corner-stone of Applied Mathematics. 

This is a method to find the approximate solutions for velocity profiles 

for very large values of the independent variables. One of the other 

corner-stones of Applied Mathematics is scientific computing and it is 

interesting to note that these two subjects have grown together. 

However, this is not unexpected given their respective capabilities. By 

using computer, one is capable of solving problems that are non-linear, 

non-homogeneous and multidimensional. Moreover, it is possible to 

achieve very high accuracy. The drawbacks are that the computer 

solutions do not provide much insight into the physics of the problem, 

particularly for those who do not have access to the appropriate 

software or computer, and there is always the question as to whether or 

not the computed solution is correct. On the other hand, the asymptotic 

integration methods are also capable of dealing with non-linear, non- 

homogeneous and multidimensional problems. So, the main objective 

behind the use of the asymptotic integration method, at least as far as 
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the author is concerned, is to provide reasonably accurate expression 

for the solution for large values of η. By doing this one is able to derive 

an understanding of the physics of the problem. Also, one can use the 

result in conjunction with the original problem, to obtain the more 

efficient numerical procedures for computing the solution.  
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