On the Range of the Berezin Transform

Namita Das

P.G. Dept. of Mathematics, Utkal University, Vanivihar, Bhubaneswar, India

C. K. Mohapatra and R. P. Lal

Institute of Mathematics and Applications, 2nd Floor, Surya Kiran Building, Sahid Nagar, Bhubaneswar, India

(Received March 20, 2006)

Abstract: Let D be the open unit disk in the complex plane C. Let $L_a^2(D)$ be the Bergman space of holomorphic functions on D that are in $L^2(D,dA)$ where $dA(z) = \frac{1}{\pi} dxdy$. Let $\mathfrak{L}(L_a^2(D))$ be the space of all bounded linear operators from $L_a^2(D)$ into itself. Define a map σ from $\mathfrak{L}(L_a^2(D))$ into $L^\infty(D)$ as $\sigma(T)(z) = \langle Tk_z, k_z \rangle$ where $\{k_z\}_{z \in D}$ are the normalized reproducing kernel for the Bergman space. The function $\sigma(T)$ is called the Berezin transform of T. It is not known what is the range of σ . In this paper we have shown if ε is a bounded linear functional on S_p , the Schetten p-class, $1 \le p < \infty$, then there exists a bounded linear operator $S \in \mathfrak{L}(L_a^2(D))$ such that $\varepsilon(P_z) \in R$ ange σ and $\varepsilon(P_z) = \langle Sk_z, k_z \rangle$ for all $z \in D$ where $P_z f = \langle f, k_z \rangle k_z$. Further $S \in S_q, \frac{1}{p} + \frac{1}{q} = 1$ and $\| \varepsilon \| = \| S \|_q$.

1. Introduction

Let $D=\{z\in C:|z|<1\}$ be the open unit disk in the complex plane C and $dA(z)=\frac{1}{\pi}dxdy$. Let $L_a^2(D)$ be the Bergman space of holomorphic functions on D that are in $L^2(D,dA)$. The reproducing kernel $K(z,\omega)$ of $L_a^2(D)$ is holomorphic in z and anti-holomorphic in ω , and

$$\int_{D} |K(z,\omega)|^2 dA(\omega) = K(z,z) > 0,$$

for all $z \in D$. Thus we can define for each $z \in D$, a unit vector $k_z \in L^2_a(D)$ by

$$k_z(\omega) = \frac{K(\omega, z)}{\sqrt{K(z, z)}}.$$

Let $\mathfrak{L}(L_a^2(D))$ be the set of all bounded linear operators from $L_a^2(D)$ into itself. Let $L^\infty(D)$ be the space of all essentially bounded measurable functions on D. Define a map σ from $\mathfrak{L}(L_a^2(D))$ into $L^\infty(D)$ as $\sigma(T)(z) = \langle Tk_z, k_z \rangle = \widetilde{T}(z), \ z \in D$. Since $|\widetilde{T}(z)| = |\sigma(T)(z)| = |\langle Tk_z, k_z \rangle| \le ||T||$, the map σ is well defined. It is not known what is the range of σ . The function $\sigma(T)$ is called the Berezin transform of T.

Given $1 \le p < \infty$, we define the Schetten *p*-class of the Hilbert space *H*, denoted by $S_p(H)$ or simply S_p , to be the space of all compact operators *T* on *H* with its singular value sequence $\{\lambda_n\}$ belonging to l^p (the *p*-summable sequence space). It is known that S_p is a Banach space with the norm¹.

$$||T||_p = \left[\sum_n |\lambda_n|^p\right]^{1/p}.$$

The space S_I is also called the trace class of H. If T is in S_I , then the series $\sum_{k=1}^{\infty} \langle Te_k, e_k \rangle$ converges absolutely for any orthonormal basis $\{e_k\}$ of H and the sum is independent of the choice of the orthonormal basis. We call this value the trace of T and denote it by tr(T).

Let $P_z(f) = \langle f, k_z \rangle k_z$, $f \in L^2_a(D)$. Then P_z is the rank one projection onto the span of k_z . For $T \in \pounds(L^2_a(D))$, TP_z is also of rank one and, therefore, belong to the trace class. Moreover,

$$tr(TP_z) = \langle TP_z k_z, k_z \rangle = \widetilde{T}(z)$$
.

Additivity of the trace now shows that

$$\widetilde{T}(z) - \widetilde{T}(\omega) = tr[T(P_z - P_\omega)].$$

2. The range of the map σ

The linear map $\sigma(T) = \widetilde{T}$ is defined and one-to-one on $\mathfrak{L}(L_{\sigma}^2(D))$. The range of σ is not well understood. By our earlier discussion, it is a linear space of bounded functions on D.

Let $\operatorname{Aut}(D)$ be the Lie group of all automorphisms (biholomorphic mappings) of D. We can define for each $a \in D$ an automorphism φ_a in $\operatorname{Aut}(D)$ such that

(i)
$$\varphi_{\alpha} o \varphi_{\alpha}(z) \equiv z$$
;

(ii)
$$\varphi_a(0) = a, \varphi_a(a) = 0$$
;

(iii) φ_a has a unique fixed point in D. In fact $\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$ for all a and z in D.

Theorem 2.1. If $\varphi \in L^{\infty}(D)$ belongs to Range of σ then $\varphi \circ \varphi_a \in Range \sigma$ for all $a \in D$.

Proof. Given $a \in D$ and $f \in L_a^2(D)$, we define a function $U_a f$ on D by

$$(U_a f)(z) = k_a(z) f(\varphi_a(z)).$$

Notice that U_a is a bounded linear operator on $L_a^2(D)$ for all $a \in D$. Further one can check² that $U_a^* = U_a$ and U_a is unitary. Now $\varphi \in \text{Range } \sigma$ implies there exists $T \in \pounds(L_a^2)$ such that $\varphi(z) = \langle Tk_z, k_z \rangle$.

If $f \in L_a^2$, then

$$\begin{split} \left\langle f, U_a K_z \right\rangle &= \left\langle U_a f, K_z \right\rangle = (U_a f)(z) \\ &= (fo\varphi_a)(z)\varphi_a'(z) = \left\langle f, \overline{\varphi_a'(z)} \, K_{\varphi_z(z)} \right\rangle. \end{split}$$

Thus

$$U_a K_z = \overline{\varphi_a'(z)} K_{\varphi_a(z)}.$$

Rewriting this in terms of the normalized reproducing kernels, we have

$$U_a k_z = \alpha k_{\varphi_a(z)}$$

for some complex constants α . Since $\|k_z\|_2 = \|k_{\varphi_a(z)}\| = 1$ and U_a is unitrary, we have $|\alpha| = 1$. Thus $U_a k_z = \alpha k_{\varphi_a(z)}$ where $|\alpha| = 1$. Hence for all $z \in D$,

$$\begin{split} \left\langle U_a T U_a k_z, k_z \right\rangle &= \left\langle T U_a k_z, U_a k_z \right\rangle = \left\langle T \alpha k_{\varphi_a(z)}, \alpha k_{\varphi_a(z)} \right\rangle \\ &= \left| \alpha \right|^2 \left\langle T \alpha k_{\varphi_a(z)}, k_{\varphi_a(z)} \right\rangle = \varphi(\varphi_a(z)) = (\varphi \circ \varphi_a)(z) \; . \end{split}$$

Thus $\widetilde{U}_a\widetilde{T}\widetilde{U}_a(z)=(\varphi o\varphi_a)(z)$ for all $z\in D$. Hence $\varphi o\varphi_a\in \text{Range }\sigma$.

We need to calculate $\|P_z - P_\omega\|_{trace}$, where $\|A\|_{trace} = trace(\sqrt{A*A})$ to verify whether $\tilde{T} \in B \subset (D)$, the space of bounded continuous functions on D.

Theorem 2.2. For $z, \omega \in D$,

$$\left\|P_z - P_\omega\right\|_{trace} = 2\left\{1 - \left|\left\langle k_z, k_w\right\rangle\right|^2\right\}^{1/2}.$$

Proof. Let $(g \otimes h)f = \langle f, h \rangle g$, a rank one operator. Now

$$k_{\omega} = \langle k_{\omega}, k_{z} \rangle k_{z} + h_{z,\omega}$$

with $\langle h_{z,\omega}, k_z \rangle = 0$ and

$$\begin{split} \left\| h_{z,\omega} \right\|^2 &= \left\langle h_{z,\omega}, h_{z,\omega} \right\rangle \\ &= \left\langle k_{\omega} - \left\langle k_{\omega}, k_{z} \right\rangle k_{z}, k_{\omega} - \left\langle k_{\omega}, k_{z} \right\rangle k_{z} \right\rangle \\ &= \left\| k_{\omega} \right\|^2 - \overline{\left\langle k_{\omega}, k_{z} \right\rangle} \left\langle k_{\omega}, k_{z} \right\rangle - \left\langle k_{\omega}, k_{z} \right\rangle \left\langle k_{z}, k_{\omega} \right\rangle + \left| \left\langle k_{\omega}, k_{z} \right\rangle \right|^2 \left\| k_{z} \right\|^2 \\ &= 1 - \left| \left\langle k_{\omega}, k_{z} \right\rangle \right|^2. \end{split}$$

For $f \in L_a^2(D)$,

$$P_{z}f - P_{\omega}f = \langle f, k_{z} \rangle k_{z} - \langle f, k_{\omega} \rangle k_{\omega}$$

$$= \langle f, k_{z} \rangle k_{z} - \langle f, \langle k_{\omega}, k_{z} \rangle k_{z} - h_{z\omega} \rangle (\langle k_{\omega}, k_{z} \rangle k_{z} - h_{z\omega})$$

$$= \langle f, k_{z} \rangle k_{z} - [\langle f, \langle k_{\omega}, k_{z} \rangle k_{z} \rangle \langle k_{\omega}, k_{z} \rangle k_{z} - \langle f, \langle k_{\omega}, k_{z} \rangle k_{z} \rangle h_{z\omega}$$

$$+ \langle f, h_{z\omega} \rangle \langle k_{\omega}, k_{z} \rangle k_{z} - \langle f, h_{z\omega} \rangle h_{z\omega}]$$

$$= (k_{z} \otimes k_{z}) f - |\langle k\omega, k_{z} \rangle|^{2} (k_{z} \otimes k_{z}) f + \overline{\langle k_{\omega}, k_{z} \rangle} \langle f, k_{z} \rangle h_{z\omega}$$

$$+ \langle k_{\omega}, k_{z} \rangle \langle f, h_{z\omega} \rangle k_{z} - \langle f, h_{z\omega} \rangle h_{z\omega}$$

$$= (1 - |\langle k_{\omega}, k_{z} \rangle|^{2}) (k_{z} \otimes k_{z}) f + \langle k_{z}, k_{\omega} \rangle (h_{z\omega} \otimes k_{z}) f$$

$$+ \langle k_{\omega}, k_{z} \rangle (k_{z} \otimes h_{z\omega}) f - (h_{z\omega} \otimes h_{z\omega}) f$$

$$= \|h_{z\omega}\|^{2} (k_{z} \otimes k_{z}) f + \langle k_{z}, k_{\omega} \rangle (h_{z\omega} \otimes k_{z}) f$$

$$+ \langle k_{\omega}, k_{z} \rangle (k_{z} \otimes h_{z\omega}) f - (h_{z\omega} \otimes h_{z\omega}) f.$$

Since $P_z - P_\omega$ is self adjoint, another calculation shows that

$$(P_z - P_\omega)^2 = \left\| h_{z\omega} \right\|^2 k_z \otimes k_\omega + h_{z\omega} \otimes h_{z\omega}.$$

Thus $P_z-P_\omega=0$ if and only if $h_{z\omega}=0$. For $h_{z\omega}\neq 0$ implies $(P_z-P_\omega)^2$ is diagonal in any orthonormal basis including k_z and $\frac{h_{z\omega}}{\|h_{z\omega}\|}$ and has two nonzero eigenvalues, both equal to

 $\|h_{z\omega}\|^2$. The positive square root of $(P_z - P_\omega)^2$ is then diagonal in the same basis and it follows that

$$||P_z - P_\omega||_{trace} = 2||h_{z\omega}|| = 2\{1 - |\langle k_z, k_\omega \rangle|^2\}^{1/2}.$$

Remarks 2.3. Since $P_z - P_\omega = 0$ implies that $|\langle k_z, k_\omega \rangle| = 1$ it is an easy consequence of the Cauchy-Schwarz inequality that $K(u,z) = \lambda K(u,\omega)$ for all $u \in D$ for some complex number λ .

Thus
$$\frac{1}{(1-\overline{z}u)^2} = \frac{\lambda}{(1-\overline{\omega}u)^2}$$
 for all $u \in D$.

Hence $z = \omega$. Subadditivity of $\|\cdot\|_{trace}$ now implies that $d(z, \omega) = \|P_z - P_\omega\|_{trace}$ is a topological metric on D. Further notice that for any $\varphi_a \in Aut(D)$, we have

$$||P_z - P_\omega||_{trace} = ||P_{\varphi_a(z)} - P_{\varphi_z(\omega)}||_{trace}$$

This happens since

$$\left|\left\langle k_{\varphi_a(z)}, k_{\varphi_z(\omega)}\right\rangle\right|^2 = \left|\left\langle k_z, k_\omega\right\rangle\right|^2.$$

Theorem 2.4. For $T \in \mathfrak{L}(L_a^2(D))$,

$$\left|\widetilde{T}(z)-\widetilde{T}(\omega)\right| \leq 2\sqrt{2} \|T\| \rho(z,\omega),$$

where $\rho(z,\omega) = \left| \frac{z-\omega}{1-\bar{z}\omega} \right|$, the pseudohyperbolic metric on D.

Proof. We have already observed that $\widetilde{T}(z) - \widetilde{T}(\omega) = trace[T(P_z - P_\omega)]$. It is known¹, for $X \in S_1, T \in \pounds(L^2_a), TX \in S_1$ and $|trace(TX)| \leq ||T|| \, ||X||_{trace}$.

Thus
$$|\widetilde{T}(z) - \widetilde{T}(\omega)| \le 2||T|| \{1 - |\langle k_z, k_\omega \rangle|^2\}^{1/2}$$
.

By direct calculation, using $K(z,a) = \frac{1}{(1-\overline{a}z)^2}$, we see that

$$1 - \left| \left\langle k_z, k_{\omega} \right\rangle \right|^2 = 1 - \left| \left\langle k_z, \frac{K_{\omega}}{\|K_{\omega}\|} \right\rangle \right|^2 = 1 - \frac{1}{\|K_{\omega}\|^2} |k_z(\omega)|^2 = 1 - \frac{\left(1 - |\omega|^2\right)^2 - \left(1 - |z|^2\right)^2}{\left|1 - \overline{z}\omega\right|^4}$$

$$=1-\left(1-\frac{\left|z-\omega\right|^{2}}{\left|1-\overline{\omega}z\right|^{2}}\right)^{2}=1-\left(1+\frac{\left|z-\omega\right|^{4}}{\left|1-\overline{\omega}z\right|^{4}}-2\frac{\left|z-\omega\right|^{2}}{\left|1-\overline{\omega}z\right|^{2}}\right)=-\frac{\left|z-\omega\right|^{4}}{\left|1-\overline{\omega}z\right|^{4}}+\frac{\left|z-\omega\right|^{2}}{\left|1-\overline{\omega}z\right|^{2}}$$

$$\begin{split} &=\frac{\left|z-\omega\right|^2}{\left|1-\overline{\omega}z\right|^2}\left(2-\frac{\left|z-\omega\right|^2}{\left|1-\overline{\omega}z\right|^2}\right) = \frac{\left|z-\omega\right|^2}{\left|1-\overline{\omega}z\right|^2}\left(1+\frac{\left(1-\left|\omega\right|^2\right)\left(1-\left|z\right|^2\right)}{\left|1-\overline{\omega}z\right|^2}\right) \leq 2\frac{\left|z-\omega\right|^2}{\left|1-\overline{\omega}z\right|^2} = 2\left(\rho(z,\omega)\right)^2\,. \end{split}$$
 Thus
$$\left\{1-\left|\left\langle k_z,k_\omega\right\rangle\right|^2\right\}^{1/2} \leq \sqrt{2}\,\rho(z,\omega)\,. \end{split}$$

Hence

$$\left|\widetilde{T}(z)-\widetilde{T}(\omega)\right|\leq 2\sqrt{2}\,\left\|T\right\|\,\rho(z,\omega)\,.$$

Let $h^\infty(D)$ be the space of bounded harmonic functions on D and define the Toeplitz operator T_ψ from $L^2_a(D)$ into itself as $T_\psi f = P(\psi f), \ \psi \in h^\infty(D), \ f \in L^2_a(D)$ and P is the orthogonal projection from $L^2(D)$ onto $L^2_a(D)$. It is not so difficult to verify that $\|T_\psi\| \leq \|\psi\|_\infty$ and $\widetilde{T}_\psi(z) = \left\langle T_\psi k_z, k_z \right\rangle = \psi(z)$ as $\psi \in h^\infty(D)$.

Corollary 2.5. If $\psi \in h^{\infty}(D)$, then for $z, \omega \in D$, we have

$$|\psi(z) - \psi(\omega)| \le 2\sqrt{2} ||\psi||_{\infty} \rho(z, \omega)$$
.

Proof. Since $\widetilde{T}_{\psi}(z) = \psi(z)$, we have

$$\begin{split} \left| \psi(z) - \psi(\omega) \right| &= \left| \widetilde{T}_{\psi}(z) - \widetilde{T}_{\psi}(\omega) \right| \\ &\leq 2\sqrt{2} \, \left\| T_{\psi} \right\| \, \rho(z, \omega) \leq 2\sqrt{2} \, \left\| \psi \right\|_{\infty} \rho(z, \omega) \, . \end{split}$$

Theorem 2.6. If $1 \le p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, ξ is a bounded linear functional on S_p then there is an operator S in S_q such that $\xi(P_z) = \langle Sk_z, k_z \rangle$ for all $z \in D$. Further, $\|\xi\| = \|S\|_q$.

Proof. For $f \in L_a^2, z \in D$, let $P_z f = \langle f, k_z \rangle k_z$ for any f and g in $L_a^2(D)$, let $L_{f,g}$ be the rank one operator defined by $L_{f,g} h = \langle h, g \rangle f, h \in L_a^2(D)$. Let $\Omega(f,g) = \xi(L_{f,g})$. It is easy to see that L is linear in f and conjugate linear in g and $|\Omega(f,g)| \le |\xi| ||L_{f,g}||_p = ||\xi|| ||f|| ||g||$. It follows that there is a bounded linear operator S on $L_a^2(D)$ such that $\Omega(f,g) = \langle Sf,g \rangle$ for all f and g in $L_a^2(D)$. Hence

$$\xi(P_z) = \xi(L_{k_z},_{k_z}) = \left\langle Sk_z, k_z \right\rangle = tr(P_zS) \,.$$

This implies that $\xi(T) = tr(TS)$ for all finite rank operator T and hence

$$||S||_q = \sup\{|tr(TS)|: ||T||_p = 1, T \text{ has finite rank }\}$$

$$=\sup\{\left|\xi(T)\right|:\left\|T\right\|_{p}=1,\ \ T\text{ has finite rank }\}=\left\|\xi\right\|$$

since S_p is generated by finite rank operators.

References

- N.I. Akhiezer and I.M. Glazman, Theory of linear operators in Hilbert space, Monographs and studies in Mathematics, Pitman, 9, 1981.
- 2. K. Zhu, On certain unitary operators and composition operators, *Proceedings of symposia in pure Mathematics*, **51(2)** (1990) 371-385.