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Abstract: Let D be the open unit disk in the complex plane C. Let [2(D) be the

Bergman space of holomorphic functions on D that are in 12 (D.dA) where

dA(z) =ldxa'y . Let £(L?,(D)) be the space of all bounded linear operators from
T

Lf,(D) into itself. Define a map o from £(L%,(D)) into [P(D) as

o(TYz)={Tk.,k.) where {k,},.p are the normalized reproducing kernel for

the Bergman space. The function o(7T)is called the Berezin transform of T. It is

not known what is the range of ¢. In this paper we have shown if ¢ is a bounded

linear functional on S, the Schetten p-class, 1 < p < o, then there exists a

bounded linear operator Se £(Lf,(D)) such that ¢(P,)eRange o and
1

E(P,)=(Sk_,k,) forall ze D where P.f =(f,k,)k,. Further SeSq,%+;=l

and || & || = [ISll,.
1. Introduction

Let D={zeC:z|<1}be the open unit disk in the complex plane C and
dA(z) = —!-dxajz. Let L2 (D) be the Bergman space of holomorphic functions on D that are
7

in L?(D,dA). The reproducing kernel K(z,0) of Lf,(D) is holomorphic in z and anti-
holomorphic in w, and

[ K(z,@)* dA(@)=K(z,2) >0,
D

forall ze D . Thus we can define for each z € D, a unit vector &, e L. (D) by
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K(w,z)

JK(z,2)

Let £(L(2, (D)) be the set of all bounded linear operators from Lf,(D) into itself. Let

k:(w) =

L” (D) be the space of all essentially bounded measurable functions on D. Define a map ¢
from £(Lf,(D)) into L”(D) as o(TXz)=(Tk,,k,)= f(z), ze D. Since |f(z)[ =
la(TXz)| = | Tk, k)| < ”T", the map ¢ is well defined. It is not known what is the
range of o . The function o(T) is called the Berezin transform of 7.

Given 1 < p < w0, we define the Schetten p-class of the Hilbert space H, denoted by
Sp(H) or simply S,, to be the space of all compact operators 7' on H with its singular

value sequence {4,} belonging to /” (the p-summable sequence space). It is known that

S, is a Banach space with the norm'.

P

/p
i, = zhal |

The space S, is also called the trace class of H. If T is in S,, then the series
i(Tek,ek) converges absolutely for any orthonormal basis {e,} of H and the sum is
il;lzd]ependent of the choice of the orthonormal basis. We call this value the trace of 7 and
denote it by #(T).

Let P.(f)= ( [k, )k:, f € L2(D). Then P, is the rank one projection onto the span
of k.. For T e £(L2(D)),TP, s also of rank one and, therefore, belong to the trace class.
Moreover,

r(TP,) = (TP.k k) =T(2).
Additivity of the trace now shows that

T(z)-T(@) = r[T(P, - P,)].
2. The range of the map ¢

The linear map o(7) = T is defined and one-to-one on £(Lf,(D)) . The range of ¢ is

not well understood. By our earlier discussion, it is a linear space of bounded functions on
D.

Let Aut(D) be the Lie group of all automorphisms (biholomorphic mappings) of D.
We can define for each a € D an automorphism ¢, in Aut(D) such that

() p,00,(z)=z;
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(i) 9,(0)=a,p,(a)=0;

a-2z

(iii) @, has a unique fixed point in D. In fact ¢,(z) = forall ¢ and z in D.

1-az

Theorem 2.1. If ¢ € L” (D) belongs to Range of o then po@p, € Range o for all
aeD.

Proof. Given ae D and f e L‘Z, (D), we define a function U, f on D by
UafN2) =k (2)f(94(2)) .

Notice that U, is a bounded linear operator on L2 (D) for all a € D . Further one can

check® that U, =U, and U, is unitary. Now ¢eRange o implies there exists
T e £(L* ) such that ¢(z) = <Tkz,kz) .

If fel2,then
(F UK ) =(Uaf K. )= WUaf)2)
= (fopa X204 (2) = (£ 0a@ Ky (2)) -
Thus |
Ul y= mKrp,,(z)-

Rewriting this in terms of the normalized reproducing kernels, we have

Uak: = aky,2)

for some complex constants a . Since [k, =ﬂk¢a(:)"=land U, is unitrary, we have

|a| =1.Thus Uk, = ak, ;ywhere |al =1.Hence forail ze D,

(U,TU ks ok, = (TU k. Uk, ) = <Tak¢n(z),ak¢,a(z)>

2
=lof*(Takp, )k, ) = 9 (@a(2) = (PO2a)2).
Thus ﬁafﬁa (z) = (pow,)(z) forall ze D.Hence poy, € Range o.
We need to calculate ||Pz - Pw"tmw , where “A" I trace(NNA* A) to verify

whether 7~" € B < (D), the space of bounded continuous functions on D.

Theorem 2.2. For z,we D,

2
"PZ - Pw"rrace = 2{1 _Kkz’k“’}l }”2 :
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Proof. Let (g ®h)f =(,h)g, a rank one operator. Now
ko = (kyok Yk, +h,,
with (h ,.k.)=0and
Vel = (ot
= <ka) _<kw’k: >kz’kw - <k(u’kz >k:>
= Il =Gk ke Yk ke ) = (Koo W) + (o)
2
= 1=[(kyk.)| -

2

For f e L;(D),
Pf = Pof =(f .k, Yk, = (S ky )k,
Yo =(/ (ks ke Yoo = gy (ks Ko, = B y)
ks ke =[S (ko Yo Nk Y = (o K Y Y
(o Mo ke o = (g Yy
= (k; ®k,)f - (ko k. )"k, ® k) / + (ko K W f ok Vi

+ <ka)’ kz ><f’ hzw >kz - (f’ hzw>hza)

Jk,

Il

={f
f

= (= [kaps ke )2y ® k) f + (ks gy @ K1)
& <kw’kz >(kz ® hzw)f _(hza) ® hz(u)f
= |0 k. ®k,) f + (ks ok )y ®K)f

+ <ka)’kz >(kz ®hzw )f_(h:a) ® hzw )f

Since P, ~ P, is self adjoint, another calculation shows that
(Pz - Pw)2 = ”hza)llzkz ®k(u +hza) ®hzw .
Thus P, - P, =0if and only if 4,, =0. For h,, #0implies (P, - P,)” is diagonal in any

. . h, .
orthonormal basis including %, and "h—“’“ and has two nonzero eigenvalues, both equal to
Zw
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||hzw"2. The positive square root of (P, —F,)* is then diagonal in the same basis and it
follows that
2}1/2

"Pz _Pwn :2”hmu=2{l_|<kz’kw>

trace

Remarks 2.3. Since P, — P, =0 implies that l(kz,kw>
of the Cauchy-Schwarz inequality that K(u,z) = AK(u,®) for all u € D for some complex
number 4.

l _
(1-zu)?  (1-u)?

=1 it is an easy consequence

Thus forall ue D.

Hence z=w. Subadditivity of || now implies that d(z,w)=|P, - P, is a

trace trace

topological metric on D. Further notice that for any ¢, € Aut(D), we have

"PZ - Pﬂ)"trﬂce = ”P¢"(z) - P(p-‘(w)

trace
This happens since
kaﬂu)’k@(a})»z ={(kesko)
Theorem 2.4. For T € £(L2(D)),
|T(z) - f(w){ <2V2 7| p(z,0),

7 -

7 ~a) , the pseudohyperbolic metric on D.
-Zo

where p(z,)= l

Proof. We have already observed that 7~”(z) - TN"(a)) =trace[T(P, - P,)]. It is
known', for X €S,,T € £L%),TX €5, and | trace(TX)| <||T| | X|

trace’
Thus  [F(2) - T(@)| <2|7] t1-[(k.. k)3,
By direct calculation, using K(z,a) = >, we see that
(1-az)
2 2 2 2
=[(kso o) = <k to >2 -— e = (1-1ef ) (1-kF)
’ - 29 =l-——lk. (0 = [fr
o k.l 1K 1-za*

2 \? 4 2 4 )
=1_[1_|_z_—i|2_ =]_[l+lz—w| _2|z-—_a)|2J=_|z—m| =

-z Ji-@7’
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_le-of [2_|z—a42} e=of |, (o (-FF))  op

h-@* p-ad® ) p-ae 1 - @) -
2 1/2
Thus {I—Kkz,kw)' } S\Ep(z,w).
Hence () - T(@) < 2v2 1] piz, ).

Let /47 (D) be the space of bounded harmonic functions on D and define the Toeplitz
operator 7, from Lf,(D) into itself as Tyf=Pf),weh™D), fe L?,(D) and P is the
orthogonal projection from [? (D) onto Lf,(D) . It is not so difficult to verify that
17, | <l and 7, ) = (T, k. k. ) = w2y as € (D).

Corollary 2.5. If w € h* (D), then for z,w e D, we have

(@) -y (@) <2V2)y]_ oz, 0).

Proof. Since 7, v (2)=w(z), we have
@ -v@)=[T, -7, @)
<202 |1, | pz.0) <242 || ptz, @) .

Theorem 2.6. If 1< p< oo,i+l =1,5 is a bounded linear functional on S, then
P q
there is an operator S in S, such that £(P,) = (Skz,k: ) SJorall ze D. Further, ||<f” e ”S"q .

Proof. For f ¢ Lf,,z eD,let P,f = (f,kb;>k_, for any fand g in L2(D), let L, be
the rank one operator defined by L, .h=(h,g)f,he LL(D). Let Q(f,g) = E(Ly,) . Itis

easy to see that L is linear in f and conjugate linear in g and
IQ(f 94 )l = "§” ”L 7, 3“p = ||§” " S " "g" . It follows' that there is a bounded linear operator S on

L%(D) such that Q(f,g) = (Sf.g) forall fand g in L2 (D). Hence
§(P.) =&y, o, ) = (Sk.,k,) = tr(P,S).
This implies that &(T) = #+(7S) for all finite rank operator T and hence

"S”q = Sup{ltr(TS)|:”T;ip =1, T has finite rank }
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=sup{|&(T )I : “T“p =1, T has finite rank } = ||&]

since S, is generated by finite rank operators.
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