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2. Preh'minan'es

Let M be an n-dimentional difTerentiabIe manifold, (T™M, n, M) its tangent bundie
and (x', y') (i, j . = 1,2, ..., n) the canonical coordinateg of the point e ™, n(u)=xiy

The Liouvijje Vector field y = Y s globally defineqd on the totg] Space TM.
Thus the Covector field

2.1 Yi=71,0)y

is globally defined on ™, and also the square of the norm of Y and the functions a, is
defined Tespectively by

22) b = 7,000
! ) 2
(2.3) (X, y)=]+co 1—,\Jﬂy” © OEN (the set of natura) numbers).
m(x)

On T™ we €an consider the d-tensor field

7
SORY)=pyx)+] - Yi¥j,
(2.4) 8ijl(%y)=y,; [ UQ(X)J iy

Proposition Q2.1). The d-tensor JSield 8,(% ) defined by (2.9) is Symmetric popn
degenerate (ie rank Il g% y)|| = n) and globally defined on Tpy

Indeed | the Mmatrix || 8%, ¥)|| has the inverse matrix Il g%, Y| given by

(2.5) 87(xy)=pY(x) a(xy) -y 'y,

By the virtye of proposition (2.1) we can cosider the generalized Lagrange Space
M= (M, 8 (X, ), with the fundamenta] metric function 8ii(x, y) given by (2.4).

We say that the generalized Lagrange Space M" = (Vv & i(x, ¥)) is reducible
to a Lagrange Space if there is Lagrangjan | - T™M\{0}— R with the property
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When the Lagrangian L(x, y) is 2-homogeneous with respect to y' we say that M" is
reducible to a Finsler space. Finally if g; (x, ¥) does- not depend on y' we say that M" is
reducible to a Riemannian space.

Theorem (2.1). The generalized Lagrange space M’ is not reducible to a Lagrange
space, neither to a Finslerian space nor to a Riemannian space.

Proof. Let Cyy be the d-tensor field

1| %gin ogw 98k
C k= EwCik = 7 ——jk—*‘—éjl-i———j;- -
o ol oy

By (2.4) we get

]
(2.6) Cink= (I—W]YJM

From here we find that the d-tensor field Cyy is not ever totally symmetric for y'l #0. So

M" is not reducible to a Riemannian space orto a Finslerian or a Lagrange space.

Now considering the d-tensor field Cijk = gihC ik from (2.5) and (2.6) we have

,- 1{1 I ]7 K
2.7 k= T kY.
St al n’(x)

Thus we have

Proposition (2.2) (2). The coefficients of the vertical part of the canonical metrical
d-connection are given by (2.7).

(b) The following identity also holds good:

gk = 0.

(¢c) The d-tensor field of torsion S}k vanishes where Sijk =C j'k -C ;g ;
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3. Absolute enérgy of the space Mn

Let &(x, y) be absolute energy of the metric 8gii(x, y)

ExY) =g,k 1)y y - a [P

G.1

Proposition G.1) 7he absolute energy s globally defined on Tpy

Theorem GB.1) The space & = (A &x ) is q Lagrange space.

Proof. Wwe shall show that d-tensor field

o 2
&% (xy)y'y/ <L O

Y
is non-degenerate. Indeed by (2.4) and (3.1), we have

3.2)

elements

/ o, 1),
*ooee L j———— = | i)
3.3) &% ag[fy 06(’ szyy]

18%,(%3)]| has the

/
dx
(.4) HCh= of‘{ '7,)“" :

solution of which will give the Euler-Lagrange €quation

_6£+d O¢ ~0 K ack
(3.5) ok a| g |70 |y dr |

The equations

(3.5) are of geodesics of gn
differentia] €quations

and these are given by the System of
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d‘?xi e d)c
=-2G 't x,—|=0.
(3.6) g (x dt)
where
*j 1 = 528 - de
Gl=2lg"Y k_Y¢
3.7 78 [ayjaxky &,xf}

Now from equation (3.1) we have

og e - 2 2
—=2a, Yy =y
(38) 62‘(1 6xj 773 J
e 1y } 8
— =8| 1-— |“& y’ys+2az{[j,sk]ys+[r,jk]y’ + =y lyiP

_on(x) o
wherer 77, -“g‘ . From (3.8) and (3.9) we have

e de I ,
(3.10) [Q\/j'éxk i (\J} =8 [1—;77][1',sk]yrysyk +2a, [ j.sk]y® yE

<) k > 2
sy v I IF =S, Ll
n n

From equation (3.3), (3.7) and (3.10) we have

j i i 1 4a ] i 2
3.11 26" = {1 !y ey IP | =y )y = I
( ) J 3
azn 2

Using (3.6) and (3.11) it follows that the geodesics of Lagrange space "= (M", &x, )
will be the geodesic of the associated Riemannian space V= (M, ¥;(x) if and only if

4 P
(3.12) Ly 2k oy - 11y 1P =0
axy’ as
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Since || y||° # 0. we have daz(my* )yt = agn' |1 y||?, which after contraction with
Y; gives 4a, = a, or Ny~ = 0. But 4a; = a but a, = 0, which is not possible, therefore 1, y*

=0. Differentiating this with respect to y' we have N;=01i.e.n is constant.

On the other hand if M is constant then (3.12) will be satisfied identically. Hence we
have the following theorem:

Theorem (3.2). The geodesics of the Lagrange space ¢' = (M, &(x, y)) will be the
geodesic of the associated Riemannian space 1" = M, V() if and only if n is constant.
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