On Summabilty of Random Fourier - Stieltjes Series

Swadheenananda Pattanayak

Institute of Mathematics and Applications, Bhubaneswar, Orissa

Sabita Sahoo

Department of Mathematics, Sambalpur University, Orissa

(Received November 23, 2004)

Abstract: If $X(t,\omega)$, $t \in R$ is stable process of index $\alpha, l < \alpha \le 2$ then it is seen that the stochastic integral $\int_{\alpha}^{b} f(t) dX(t,\omega)$ is defined in the sense of mean for $f \in L^{\alpha}$. Denote $a_n = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-int} f(t) dt$ for $f \in L^{\alpha}$, $l < \alpha \le 2$ and $A_n(\omega) = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-int} dX(t,\omega)$. In this paper it is established that the Random Fourier-Stieltjes (RFS) series $\sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{int}$ converges to the stochastic integral $\frac{1}{2\pi} \int_{0}^{2\pi} f(t-u) dX(u\omega)$ in the sense of mean. Further it is proved that the RFS series $\sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{int}$ is Abel summable to $\frac{1}{2\pi} \int_{0}^{2\pi} f(t-u) dX(u\omega)$.

1. Introduction

Let $X(t,\omega)$, $t \in R$ be a continous stochastic process with independent increments and f be a continuous function in [a,b]. Then the stochastic integral $\int_a^b f(t) dX(t\omega)$ is defined in the sense of convergence in probability and is a random variable (cf. Lukacs¹, p.148). If $X(t,\omega)$ is a symmetric stable process of index $\alpha, 1 \le \alpha \le 2$ then the stochastic integral $\frac{1}{2\pi} \int_0^{2\pi} f(t) dX(t\omega)$ is defined in the sense of convergence in probability for $f \in L^p[0,2\pi]$, $p \ge \alpha$ (cf. Nayak, Pattanayak, and Mishra²). Further if $X(t,\omega)$ is a stable process

of index $\alpha, 1 \le \alpha \le 2$, and $f \in L^{\alpha}[0,2\pi]$ then the stochastic integral $\int_{a}^{b} f(t) dX(t\nu)$ is defined in the sense of mean (cf. Kwapien, Woyczynski³). Hence in particular

(1.1)
$$A_n(\omega) = \frac{1}{2\pi} \int_0^{2\pi} e^{-int} dX(t,\omega)$$

exists for the orthonormal set $\{e^{-int}\}_{n=-\infty}^{\infty}$ and is the Fourier - Stieltjes coefficients of $X(t,\omega)$.

The series $\sum_{n=-\infty}^{\infty}A_n(\omega)e^{int}$ is a Fourier - Stieltjes expansion of $X(t,\omega)$. No doubt $A_n(\omega)$ are not independent random variables. A series of the form

(1.2)
$$\sum_{n=-\infty}^{\infty} a_n A_n(\omega) e^{int}$$

with weights $(a_n)_{n=-\infty}^{\infty}$ is known as Random Fourier - Stieltjes (RFS) series. Convergence of the series (1.2) in the sense of probability were studied extensively by Mishra, Nayak and Pattanayak⁴ and Nayak, Pattanayak, and Mishra². They have shown that for a symmetric stable process of index α , $l < \alpha < 2$, the RFS series (1.2), where $A_n(\omega)$ are defined as in

(1.1), converges in probability to the stochastic integral $\frac{1}{2\pi} \int_0^{2\pi} f(t-u) dX(u,\omega)$ for some $f \in L^p[0,2\pi], p \ge \alpha$ such that a_n are the Fourier cofficients of f.

If $X(t,\omega)$ is a symmetric stable process of index $\alpha,l<\alpha\leq 2$, then it can also be shown (see Theorem 3.4) that the seris (1.2) converges in the sence of mean to the stochastic $\frac{1}{2\pi}\int_0^{2\pi}f(t-u)dX(u,\omega)$. If $f\in L^p[0,2\pi]$, $p\geq 1$ and

(1.3)
$$a_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-int} f(t) dt n = \dots -2, -1, 0, 1, 2...$$

are the Fourier coefficients of f then it is easy to see that for each r with $0 \le r < 1$, the series

$$(1.4) \sum_{n=-\infty}^{\infty} a_n r^{(n)} e^{int}$$

converges uniformaly and represents a continuous function on $[0,2\pi]$. Let us write

$$f_r(t) = \sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{int}.$$

Then the stochastic integral

(1.6)
$$\int_0^{2\pi} f_r(t) dX(t, \omega)$$

is defined. Since each $f_r(t)$ is continuous, it belongs to $L^p[0,2\pi]$ for all $p \ge 1$ and $a_n r^{[n]}$, n = ..., -2, -1, 0, 1, 2, ... are the Fourier coefficients of $f_r(t)$. So the random series

$$\sum_{n=-\infty}^{\infty} a_n A_n r^n e^{int}$$

will converge to the stochastic integral

(1.8)
$$\frac{1}{2\pi} \int_{0}^{2\pi} f_{r}(t-u) dX(u\omega)$$

in the sense of convergence in mean. Here $f_r(\theta)$ is the harmonic extension of f to the disc $\{z : |z| \le 1\}$ given by the Poission integral

(1.9)
$$\frac{1}{2\pi} \int_{0}^{2\pi} \frac{1-r^2}{1-2r\cos(\theta-t)+r^2} f(t) dt$$

It can now be shown (see Theorem 3.5) that $\int_0^{2\pi} f_r(t-u) dX(u,\omega)$ converges to

 $\int_{0}^{2\pi} f(t-u)dX(u,\omega) \text{ as } r \to 1^{-} \text{ in the sense of mean. This would mean } \sum_{n=-\infty}^{\infty} a_{n}A_{n}e^{int} \text{ is Abel}$

summable to $\int_0^{2\pi} f(t-u) dX(u, \omega) . \text{In fact a Fourier series } \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

is said to be Abel Summable to s if for $0 \le r < 1$, $\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)r^n$

converges to s. In complex form it would mean- a Fourier series $\sum_{n=-\infty}^{\infty} a_n e^{int}$ is said to be Abel

summable to s if for each r with $0 \le r < 1$, $\lim_{r \to l} \sum_{n=-\infty}^{\infty} a_n r^n e^{int} = s$.

2. Definitions

Definition 2.1. A sequence of random variables $\{X_n\}_{n=1}^{\infty}$ is said to converge in mean to a random variable X if

$$\lim_{n\to\infty} E \mid X_n - X \mid = 0$$

Definition 2.2. The class of functions f satisfying $\int_a^b |f(x)|^p dx < \infty$ is denoted by $L^p[a,b]$.

Definition 2.3. A series $\sum_{n=0}^{\infty} u_n$ is said to be Abel summable to s if for

$$|r| < l$$
, $\sum_{n=0}^{\infty} u_n r^n$ converges to s as $r \to 1^-$ i.e. $\lim_{r \to l} \sum_{n=0}^{\infty} u_n r^n = s$.

3. Results

To prove that the series (1.2) converges to the stochastic integral (1.8) in the sense of mean, we require the following result.

Lemma 3.1. If $X(t, \omega)$ is a symmetric stable process of index α , $1 < \alpha \le 2$ and $f \in L^p[a,b], p \ge \alpha$ then the following inequality holds:

$$E\left(\left|\int_{a}^{b} f(t)dX(t,\omega)\right|\right) \leq \frac{4}{\pi(\alpha-1)} \int_{a}^{b} \left|f(t)\right|^{\alpha} dt + \frac{2}{\pi} \int_{u>1} \frac{1 - \exp(-\left|u\right|^{\alpha} \int_{a}^{b} \left|f(t)\right|^{\alpha} dt)}{u^{2}} du.$$

Proof of this Lemma requires the following two results:

Lemma 3.2: (c.f. Shiryayev⁵, p.341) A stable random variable X(t) always satisfies the inequality $E \mid X \mid^r < \infty$ for all $r \in (0, \alpha), 0 < \alpha \le 2$.

Lemma 3.3: (c.f. chow, Teicher⁶) If φ is the characteristic function of a random variable X(t) then

$$\int_{-\infty}^{\infty} |X| dF(X) = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{1 - Re\varphi(t)}{t^2} dt.$$

Proof (of Lemma 3.1): Let the characteristic function of the increment $X(t+\tau,\omega)-X(t,\omega)be$

$$exp(-|\tau||u|^{\alpha}), 1 < \alpha \le 2.$$

Then the random variable $Y = \int_a^b f(t)dX(t,\omega)$ will have characteristic function

$$\psi(u) = \exp\left(-\int_{a}^{b} |u|^{\alpha} |f(t)|^{\alpha} dt\right), 1 < \alpha \le 2$$

as is established in Lukacs¹[p.150]. Lemma 3.2 implies that E|Y| exists as $1 \in (0, \alpha), 1 < \alpha \le 2$. Using Lemma 3.3 we get

$$E|Y| = \int_{\infty}^{\infty} |Y| dF(Y)$$

$$= \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{1 - \psi(u)}{u^2} du$$

$$= \int_{u \le 1} \frac{1 - \psi(u)}{u^2} du + \int_{u > 1} \frac{1 - \psi(u)}{u^2} du.$$

Now

$$\int_{u \le 1} \frac{1 - \psi(u)}{u^2} du = \int_{1}^{1} \frac{1 - \exp\left(-|u|^{\alpha} \int_{a}^{b} |f(t)^{\alpha} dt\right)}{u^2} du$$

$$\le \int_{1}^{l} |u|^{\alpha - 2} \int_{a}^{b} |f(t)|^{\alpha} dt \ du(\because 1 - e^{-x} < x \text{ for } x > 0)$$

$$= 2 \int_{1}^{l} |u|^{\alpha - 2} du \int_{a}^{b} |f(t)|^{\alpha} dt$$

$$= \frac{2}{\alpha - 1} \int_{a}^{b} |f(t)|^{\alpha} dt.$$

So

$$E\left(\left|\int_{t}^{b} f(t)dX(t,\omega)\right|\right) \leq \frac{2}{\pi} \frac{2}{\alpha - 1} \int_{a}^{b} \left|f_{n}(t)\right|^{\alpha} dt$$

$$+\frac{2}{\pi}\int_{|u|>1}\frac{1-\exp\left(-\left|u\right|^{\alpha}\int_{u}^{b}\left|f(t)^{\alpha}dt\right|\right)}{u^{2}}du$$

which proves the Lemma.

Theorem 3.4: Let $X(t, \omega), t \in \mathbb{R}$ be a symmetric stable process of index α . $1 < \alpha \le 2$ with period 2π and

$$A_n(\omega) = \frac{1}{2\pi} \int_0^{2\pi} e^{-nt} dX(t, \omega), \ n \in \mathbb{Z}.$$

Then the RFS series

$$(1.10) \qquad \sum_{n=-\infty}^{\infty} a_n A_n e^{int}$$

converges in mean to the stochastic integral

$$\frac{1}{2\pi}\int_0^{2\pi}f(t-u)dX(u,\omega)$$

for some $f \in L^p[0,2\pi]$, $p \ge \alpha$ such that α_n are the Fourier coefficients of f.

Proof: Let $S_n(t) = \sum_{k=-n}^n a_k A_k e^{ikt}$ be the partial sum of the RFS series

(1.10) and that of f be
$$s_n(t) = \sum_{k=-n}^n a_k e^{ikt}$$
.

$$S_n(t) = \sum_{k=-n}^n a_k A_k e^{ikt}$$

$$= \sum_{k=-n}^n a_k \left(\frac{1}{2\pi} \int_0^{2\pi} e^{-iku} dX(u, \omega) \right) e^{ikt}$$

$$= \sum_{k=-n}^n a_k \frac{1}{2\pi} \int_0^{2\pi} e^{-ik(t-u)} dX(u, \omega)$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \sum_{k=-n}^n a_k e^{ik(t-u)} dX(u, \omega)$$

$$=\frac{1}{2\pi}\int_{1}^{2\pi}s_{n}(t-u)dX(u,\omega)$$

Now

$$E\left(\left|\frac{1}{2\pi}\int_{1}^{2\pi}f(t-u)dX(u,\omega)-S_{n}(t)\right|\right)$$

$$=E\left(\left|\frac{1}{2\pi}\int_{1}^{2\pi}f(t-u)dX(u,\omega)-\frac{1}{2\pi}\int_{1}^{2\pi}s_{n}(t-u)dX(u,\omega)\right|\right)$$

$$=E\left(\left|\frac{1}{2\pi}\int_{0}^{2\pi}f(t-u)-s_{n}(t-u)dX(u,\omega)\right|\right)$$

$$\leq \frac{2}{\pi^{2}(\alpha-1)}\int_{0}^{2\pi}\left|f(t-u)-s_{n}(t-u)\right|^{\alpha}du$$

$$+\frac{1}{\pi^{2}}\int_{u>1}\frac{1-exp(-|v|^{\alpha}\int_{0}^{2\pi}\left|f(t-u)-s_{n}(t-u)\right|^{\alpha}du)}{v^{2}}dv \text{ (by Lemma 3.1)}$$

It is known (c.f. Zygmund⁷ [p.266] that for $f \in L^p[0,2\pi], p > 1$

$$\int_{t}^{2\pi} |f(t-u)-s_{n}(t-u)|^{p} du = 0.$$

Now if $p \ge \alpha$ then we have

$$\lim_{n\to\infty} E\left(\left|\frac{1}{2\pi}\int_{0}^{2\pi} f(t-u)dX(u,\omega)-S_{n}(t)\right|\right)=0.$$

Hence it is proved that the RFS series (1.10) converges in mean to

$$\int_{0}^{2\pi} f(t-u)dX(u,\omega).$$

In the next theorem it is established that the RFS series $\sum_{n=-\infty}^{\infty} a_n A_n e^{int}$ is Abel summable

to $\frac{1}{2\pi} \int_{0}^{2\pi} f(t-u) dX(u,\omega)$ in the sense of mean.

Theorem 3.5. Let $X(t,\omega)$ be a symmetric stable process of index $\alpha,1<\alpha\leq 2$, and f(t) be in $L^p[0,2\pi]$, $p\geq \alpha$. If $A_n(\omega)=\frac{1}{2\pi}\int_0^{2\pi}e^{-int}dX(t,\omega)$ and $a_n=\frac{1}{2\pi}\int_0^{2\pi}e^{-int}f(t)dt$, then the series $\sum_{n=-\infty}^{\infty}a_nA_ne^{int}$ is Abel summable to $\frac{1}{2\pi}\int_0^{2\pi}f(t-u)dX(u,\omega)$ in the sense of mean.

Proof: As we know, for each r with $0 \le r < 1$, the series $\sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{int}$ converges uniformly and represents a continous function and hence belong to L^p , for all p > 1. Denote

$$f_r(t) = \sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{int}, 0 \le r \le 1.$$

Since $f \in L^p$, $p \ge \alpha$, a_n is its Fourier coefficient and $0 \le r < 1$, each f_r is in L^p , $p \ge \alpha$. So by Theorem 3.5 the random series $\sum_{n=-\infty}^{\infty} a_n A_n r^n e^{int}$ will converge to the stochastic integral $\frac{1}{2\pi} \int_0^{2\pi} f_r(t-u) dX(u\phi)$ in the sense of mean. Since the random Fourier series $\sum_{n=-\infty}^{\infty} a_n A_n e^{int}$ converges to the stochastic integral $\frac{1}{2\pi} \int_0^{2\pi} f(t-u) dX(u\phi)$ in the sense of mean we have

$$E \left| \frac{1}{2\pi} \int_{0}^{2\pi} f_{r}(t-u) dX(u\omega) - \frac{1}{2\pi} \int_{0}^{2\pi} f(t-u) dX(u\omega) \right|$$

$$= E \left| \frac{1}{2\pi} \int_{0}^{2\pi} (f_{r}(t-u) - f(t-u)) dX(u\omega) \right|$$

$$\leq \frac{2}{\pi^{2}(\alpha - 1)} \int_{0}^{2\pi} |f_{r}(t-u) - f(t-u)|^{\alpha} du$$

$$+ \frac{1}{\pi^{2}} \int_{u>1} \frac{1 - \exp(-|v|^{\alpha} \int_{0}^{2\pi} |f_{r}(t-u) - f(t-u)|^{\alpha} du)}{v^{2}} dv \text{ (by Lemma 3.1)}.$$

We know that the integral

$$\int_0^{2\pi} |f_r(t-u) - f(t-u)|^{\alpha} du$$

tends to 0 as $r \to 1$ if $f \in L^p$, p > 1 (c.f. Zygmund⁷ [p.150], As $\frac{1}{u^2}$ in the integrand of the second integral is dominated by 1 the second integral also tends to 0. Thus it is proved that

the RFS series
$$\sum_{n=-\infty}^{\infty} a_n A_n e^{int}$$
 is Abel summable to $\frac{1}{2\pi} \int_0^{2\pi} f(t-u) dX(u-\omega)$.

Note: The Abel summability of the random series $\sum_{n=-\infty}^{\infty} a_n A_n e^{int}$ as defined in (1.10) in the sense of probability can also be proved using the inequality

$$P\left(|\int_{a}^{b} f(t)dX(t,\omega)| > \delta\right) \leq \frac{c.2^{\alpha+1}}{(\alpha+1)\delta^{\alpha}} \int_{a}^{b} |f(t)|^{\alpha} dt,$$

for all $\delta > 0$, where $\delta' < \delta$ and c is a positive constant and the fact that the random series

$$\sum_{n=-\infty}^{\infty} a_n A_n e^{int}$$
 converges in the sense of probability to the stochastic integral

$$\frac{1}{2\pi} \int_0^{2\pi} f(t-u) dX(u,\omega)$$
 (cf. Nayak, Pattanayak, and Mishra²).

References

- 1. E. Lukacs: Stochastic convergence, Academic Press, New York, 1975.
- C. Nayak, S. Pattanayak, M.N. Mishra: Random Fourier- Stieltjes series associated with stable process, Töhoku Mathematical Journal, 39(1) (1987) 1-15.
- S. Kwapien, W.A. Woyczynski: Radom series and Stochastic Integral: Single and Multiple, Probability and Applications, Birkhäuser, Basel, and Boston, 1992.
- M.N. Mishra, N.N. Nayak, S. Pattanayak: Some continuity properties of a Random Fourier-Stieltjes series, J. of Mathematical and Physical Sciences, 14 (1980) 259-272.
- 5. A.N. Shiryayev: Probability, Springer-verlag, New York, 1984.
- Y.S. Chow, H. Teicher: Probability Theory: Independece, Inter changability. Martingles, Springer-Verlag, New York, 1978.
- A. Zygmund: Trigonometric series, Cambridge University Press, London, 1977.

. 2

a.			