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Abstract: In this paper, a class shrinkage estimators has been proposed for a shape
parameter of the Generalized Burr Distribution by using the maximum likelihood
estimator in the kernel. The proposed class of the estimators are compared with the
maximum likelihood estimators in terms of the mean squared error and their effective
intervals of dominance are obtained.

1. Introduction

As a member of Burr! family of distributions which includes twelve type of cumulative
distributions with a variety of density shapes. The two parameter generalized Burr (type X11)
distributions has pdf of the form.

a.n flx;ek) = ol (1 + x5y ® D (ck)> 0, x> 0
and its cdf is

(12) F(x;c.0)=1-(1* x)k; (ck)>0,x> 0
where ¢ and k are shape parameters.

The Burr (c,k) distribution was proposed as a life time model by Dubey??. The Burr
distribution is a unimodel distribution as shown by Burr and Cislak* Rodriguez’and
Tadikamalla® show that the Burr distribution covers the curve shape caracteristics for the
Normal, Logistic and exponential (Pearson typeX) distribution as well as a significant portion
of the curve shape characteristic for Pearson type 1 (beta), 11, 111 (gamma), vV, V11, IX and X1
distributions. Lewis’ noted that the Weibull and exponential distribution are special limiting
cases of the parameter values of the Burr distribution. Wingo®® has described the method
for fitting the Burr distribution to life test data for complete and type 11 censored samples.
Inferences based on Burr (c,k) distribution and some of its testing measures were made by
Popadopoulos1'®. Evans and Ragab'!, Lingappaiah'?, Al-Hussaini et al.'*. In 1997 Anwar
Hossain and Shyamal' studies the estimation of the parameters in the presence of outliers
for the Burr XII distribution.

In this paper, a class shrinkage estiamators the of a shape parameter of Generalized
Burr distribution have been proposed. It has been shown that the MLE is also the MVB
estimator. Proverties of these estimators have been studied with the helo of mean sauared
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€rrors.

We reparameterize the c.d.f (1.2)togetthec.d.f of generalized Burr distribution in the
following form

]
(1.3) Fox)=1-(1+x°) 0:4c.0)>00<x<c0

and its probability density function (pdf) comes out to be

/
= =+
(1.4) f(x.'cﬂ)=§x“’/(l+x") (0 ),'c,9>(),x>0

where ¢ and @ are the shape parametes. This Teparameterization leads to mathematical
tractibility in calculation.

Statistical properties:
The probability density function of the form (1.4) of GBD is unimodel with mode

! ¢
c~-1
Ximode =] ————— if ¢ > - i .
(1.5) mod [,’c/ﬁ)#»l] ,ifc landLshapedlfcgl

The rth moment of generalized Burr distribution is given by

(16) 4, =E[X"]=53[é—£’(’+iﬂ

C C

(s 4 X
so that the fourth moment is finite if §> For (5 > 4]. Therefor, the mean and variance are

given by
‘ I 11 1 /
(1.7 Mean(ﬂ/)=53[5-;,(l+;ﬂ
I 11 2 2 I 11 1 / ?
(18) andVariance(#z)=53[5—;,(/ﬁ-zﬂ—{ZB[——;,(1+;]J}

&
exists for —>4
0

2. Maximum likelihood estimator

Let us consider a random sample n, x = L S— X)) from the p.d.f. (1 .4) when c is
known. The MLE is given by
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) i ] 12 R
eR) 9=;Z/og(1+x,‘)
- i=/
We obtained the pdf of g as
(5]
(22) 6)=N0) (5Y om0 4y
f(6) 1_(”)()' e 0>

The log likelihood function may be written as

mn

f'ed . 1 1 ]
2.3) log f(x16)= nlog(—é]-t—lo [1x I]—(;+/)Zlog(}+x,‘)
1=/ 1=/
Diffentiating with respect to 8 , we get

d 7
(2.4) ;iglogf (x16) =£7{

Zlog(1+x,“ )—9}

ey

Now, it is easy to verify that the regularity condition of Rao-Cramer inequality are satisfied
by the p.d.f. (1.4) when the parameter ¢ is known

Thus the estimator

& 1 n ¢
2.5) 0=— log(1+x¢)

is MVB (minimum variance bound) estimator and with the variance

. 2
2.6) var(é) =&

n

it is very easy to varify that E[é]: 0

We mnow that if MVB estimator exists, it exists for one and only one specific function of 8
(Kendall and Stuart'®). This consideration has led us to the repameterization of the p.d.f. in
the form (1.4).

The idea of shrinkage estimator using the point guess value of the parameter was
introduced by Thompson'é. He suggests that a procedure, known as shrinkage technique
and proposed an estimator T, of the parameter W as

Q7 T, =ki+(1-kjpu, 0<k<l

which is better than the uiformly minimum variance unbaised estimator (UMVUE) under
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squared error loss criterion in the neighbourhood of the guess value L. Here k is known as
shrinking factor, specified by the experimenter according to his belief in U, The value of k
near zero imply strong belief in p1. The optimum value ofk, say f , is obtained by minimizing
MSE(T ) with respect of k and substituting the usual estimator of the parameter in resulting
expression for k. Thompson'® considered the estimation problem of mean of normal, binomial,
Poisson and Gamma distributions. Mehta and Srinivasan'’ proposed a more general class of
estimators by shrinking the maximum likelihood estimator [i towards U, as

- bl ji—p)
T, =0l ] —expd =L 207
(28) 2=u1 erp{ Var( i) }

where a and b are positive constants to be suitably chosen such that 0 <a <1 and b >0 and
showed that the MSE of these estimators are bounded and smaller than Thompson type
estimators T, in the wider effective interval of the parametic space. Pandey'*'® applied the
shrinkage technique in estimation of normal variance and scale parameter of exponential
distributins. Pandey and Singh®, and Pandey and Srivastava?'?* proposed shrinkage
estimators of the scale in exponential distribution from censored sample. Pandey et. al®
considered the problem of estimation of the shape parameter of Weibull distribution from
type Il censored sample. Jani** proposed a class of shrinkage estimators by taking the
unifonnly minimum vaiance unbaised estimator (UMVUE) {1 in the ‘kernel’, for the scale
parameter of exponential distribution as

b
H
29 Tipy =My l—k{fo} ;0<k<]

where b is a non-zero real number. The class of estimators includes the estimators porposed
in Pandey and Srivastava’', as special cases and gives other better estimates for wider range
of parametric space. Srivastava and Kumar® proposed a class of shrinkage estimator. over an
interval. Kotani?® proposed the best shrinkage predictor of a preassigned dominance level
for a future order statistic of an exponential distribution under type I censoring assuming a
prior estimator of the scale having some distribution.

We have considered the estimation porblems of the shape parameter of generalized
Burr distribution using shrinkage technique. We have proposed a class of shrinkage estimators
with MLE in the ‘kernel’ of the proposed estimator by shrinking towards the prior estimate or
guess value for the shape parameter of the Generalized Burr distribution. The proposed class
of estimators are compared with the maximim likelihood estimator in terms of mean square
error (MSE) and their effective intervals of dominance are obtained.
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3. Shrinkage Estimator

Let us consider the class of shrinkage estimator of © for the generalized Burr distribution
(GBD) withp.d.f. (1.4)as

0 b
@G.D T(h/=9l;]+k{—él} 0<k<l

where b is a non-zero real number and § isthe MLE of 6. This estimator gives rise to a class

of shrinkage estimators for different choice of b. Now the MSE of T, is given by
G2 wse [1n))= E [T, - o} :

_ (8, -0)? + K2 E|g? [+ 2k(0, -6 Jat El6 |

where k is chosen such that MSE [Tm] is minimum,. differentiating (3.2) with respect to k and
equating it to zero, i.e.

—‘%MSE[T(,,,F 0
N %Mse[r(,,,k g0 Elg )+ 2x09, - 008y £ |0

—(6,-0)E(6")

33 = -

(33) 9FE6 ey
d2

Since d—kz—MSE[T(,, >0

kas givenin (3.3) leads to minimum value of MSE [T(b)]. Now, for any non-zero real number
j, we have.

(34) E[é‘-’”]=§é‘”’f (6)d6

which on simplification leads to

-1 b o
(3.5) elo-)- be] renit)

r(n)

Therefore, substituting the value of El@ﬂ'bl forj=1,2 from (3.5), we have
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b
=
36 Elg-b] 1nG I(n-p,
(36) l6] LJ\FW

26
e o’ I(n-2p)
37 Elg-2|- I
6D o] s

substituting the value of E[é-.ibJ from (3.6), and (3.7) in (3.3), we get

(3.8) k= _[@_ ]J(Q_OJ_(IHU M
. 0 0 /1bf(n—2b)

Since k depends on 0, we replace it by its MLE 6 to get

~(b+
(39) /E——[‘i"’—ljfi”J "oy
3. = = = Ty
0 \ o nbf/'n—Zb)

Consequently, the proposed estimator T(b) defined in (3. 1) is

(3.10) T(lb) =6 +k/(é‘90)
where

i - I'tn-b)
G111 ! n”f(n—2b)

The MSE of estimator T‘vb, is

?

(3.12) MSENT, |- £l +4,(6- 0, )-6]
: 5 s, N
MSE[TWJ: [(1-k,)8,-6F + k7 (67 )+2k,[ 1k, )8, - 6]E(6)
Substituting the value of E[6®]and E[672°] forj=-1,-2 from (3.5), we get

(3.13) E®)=0 and

E(é?)za-’(nl)
n

Substituting the value of [0] and E[éz] from (3.14) in (3.12), after simplification we get



A Class of Shrikage Estimators of a Shape Parameter

r el
=4 2 5, o= k] k"
(3.14) MSE[ Ty, ] =67 (1=k, /" (5-1)7 +-n’—}
where 5= by
7
Comparisons:

Let us define the relative efficiency of T, with respect to MLE § as

.1 MSE[8]
quﬁ”/dzﬁiiffﬁj
: (h)

1

(G.15) n[(]—k, 2 (5-1)° +"L}
n

The porposed class of shrinkage estiamtor T('b) will be better than MLE § . if

.
Ref[—g—/} >/

0
ie.
mselr, |- mselé]<o
or, I-Ja <8<l+ia
where
1(1+k) I(n-b)
(3.17) a=—i— and k==
nil+k;j nl(n-2b)

Table 1.s The relative efficiencies of T, with respet to MLE o for different values

of b,d and sample size n=5

N3] 01 0 020 040 0.80 125 1.50 2.00 3.00
2 106943 08475 13317 38375 33891 17172 05775  0.1580
A1 12392 12766 13433 14286 14222 13714 12000  0.8000

1 09921 1.1468 15432 25510 24390 17857 08621 02309
2 102912 03683 06536 56922 36914 09395 02359  0.059]




114

R.S. Srivastava and Narayan Kumar Joshi

Table2. The relative efficiencies of T, with respet to MLE @ for different values

ofbd and sample size n=10

3| 010 020 040 0.80 125 1.50 200 3.00
2] 06874 08093 1.1431 2.1624 20348 13641 05884  0.1797
-LLLH93 L1372 11680 12052 12025 11805 11000 08643

110373 11161 12755 15044 15038 13514 09615 04464
2] 03447 04293 07208 32158 2.5863 09829 02825 00734

35

n=10

Table3. The relative efficiencies of T, with respet to MLE @ for different values
ofb,d and sample size n=15

)

b 0.10 020 040 0.80 125 1.50 200 3.00
2107184 08242 10881 17162 | 6492 12447 06283 02108
-1 110795 10912 LIl 1.1348 L1331 1.119] 1.0667  0.8982

1 110340 10849 1.1805 13127 13025 12228 09825  0.5501
2 | 04132 05040 07894 22387 | 9828 10154 03440  0.0944
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i = =2

Tabled. The relative efficiencies of T, with respet to MLE g for different values
of b, and sample size n=20

8| 0.10 020 040 0.80 125 1.50 2.00 3.00
-2 107486 08427 10628 15151 14711 1.1844 06655 02418
-1 11059 1.0683 1.0830 1.1003 10991 10889 10500 09188

1110288 10661 1.1338 12225 12158 11628 09901 06211
2104714 05640 08336 18372 16938 10263 03983  0.1155

21 n=20
—a—b=-2
18 e = -1
16 ——b= 1
14 —a—b= 2
12
1
[+F] /
0.6 4
04
024
0 r
1 2 3 4 5 6 7 8

Table5. The relative efficiencies of T, with respet to MLE g for different values
of b,d and sample size n=25

I 31 010 020 040 0.80 125 1.50 2,00 3.00
2 (07743 08592 10485 14016 13691 11479 06973 02713
-1 110477 10546 10662 10799 10789 10709 10400 09324

T 110246 10540 11062 1.1726 11677 1.1282 09936 0.6728
2 |05198 06117 08631 16275 15321 10293 04451  0.1361
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Table 6. The ranges of 6 for which T,,is better than MLE g for different value of b and

sample size n.

5] 010 0.20 040 0.80 125

b
2| e2771-17200 06.3239-1 6761 03389-1 6611 0.3963- 1.6837 0.3506~1.6494
| -04832-24832 -0.4491~2 4491 -04376-2 4376 0431824318 -0.4283-2 4283
| 010561 8944 0.0513~1.9487 00339-1 9661 0.0253~1.9747 00202197798
2 0.5155-1.4845 0 5052-1.4948 /4941~ 1 5059 0.4877-1 5123 0.5320~1,4680

The Tables (1) to (5) show the relative efficiencies T('b) with respect to the MLE § for

different choices of b and sample size n and for different values of 8 . It is evident from the
table that the relative efficiencies are more than one for almost all samle sizes and  when b =
1,-1. For b =2, -2 the relative efficiencies are more than one for a narrow range of & . Thus
estimators with b = 1, -1 perform better. Figures (1) to (5) show the same picture on graph.
From these curves we can find the values of 6 at which relative efficiencies are equal to one.

The Table (6) shown the ranges of & for which T('b) is better than g . Itis clear from this
table that for each choice b and n the ranges are fairly wide.

Thus we can choose a suitable shrinkage estimator according to the situation at hand.
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