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Abstract: In this paper, we have defined Hyperbolic R -structure manifold and some
of its geometric properties on the pattern of R -structure manifold. Integrability
conditions are discussed in this manifold. Furthermore, Nijenhuis tensor and its
associated are defined and some of their properties have been discussed.

1. Hyperbolic T and Hyperbolic R -Structure Manifold
AHGEF - structure is defined as:
(1.)a F2=—a2, or
(1.hb ,\= = - A2 x, forcomplex number ')'.

It is hypebolic m-structure if A = 0.

Definition (1.1). /f on a Hyperbolic r-structure manifold V,, there exists a symmetric
metric tensor a of rank n,;<n, such that

(1.2)a a(X,Y)=Aa(X,Y)(1.2)b a(X,Y)=Xa(X,Y)

Then we say that a is compatible with the Hyperbolic nt-structure. Then {F, a} is called
Hyperbolic R ~structure and V,, is said to be Hyperbolic R, -structure manifold.

A bilinear function A in Hyperbolic R -structure manifold is called pure if
(13)a AX,Y)+MAX,Y) =0
and hybrid, if

(1.3)b AX,Y)-NAX,Y)=0

Nijenhuis tensor with respect to F is a vector-valued bilinear function N, given by

(14) NXY) S [RT]+[XY]-[XY]-[XT].
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In hyperbolic nt-structure manifold, equation (1.4) assumes the form

(15) MXY)=[XY]-Z [XY]-[XY]-[XY].
Let us put
(1.6) NXY.Z) S a(N(X.Y).Z).

Then ' N is called associated Nijenhuis tensor in Hyperbolic R -structure manifold.
2. Integrability Conditions

Theorem (2.1). The necessary and sufficient condition that V, be a Hyperbolic
n-structure manifold is that it contains a distribution T, , of complex dimension n/2 and a

distribution &, complex conjugate to T, ,,, such that m,,, and T, have no direction
in common and span together a linear manifold of dimension n, projections on ;> and

R, being L and M given by
Q.12) 2AL(X ) = AX —iFX,

(2.1b) 2AM(X ) = AX +iFX.

Proof. Let V be a Hyperbolic n-structure manifold corresponding to the eigen values

Ad and -AQ. Let there be n/2 linearly independent eigen vectors Tox =12, :n/2 andn/2

X

linearly independent complex conjugate eigen vectors . Then we have

(2.2a) BT =0=>b=0Yx.

X x
(2.2b) ¢S =0=>c=0Vx.

Now,
x Y x_ ¥ _ X y
cT+dS=0=>¢T+dS =0= Ai(cT-dS)=0.
X ¥ X ¥V X ¥
These equations imply

X v x ¥
¢T=0,dS=0=c=d=0, forxy — {I’§}
x y
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is a linearly independent set.

Let us put
(2.3a) 2L(X) = X-Ai X,

(2.3b) 2M(X) = X+AiX.

Then we have

2L(T) = (1+M)T,
2L(S) = (-8,
2M(T) = (1=M)T,
2M(§) = (1+73)§.

Thus we have proved that there is a distribution n,., of complex dimension n/2 and
there is a complex conjugate distribution 7,,, of dimension n/2 which has no common
direction with 7, ,, and spans with n_,, a linear manifold of dimension n, projection of

m,,, and T, ,, being L and M.

Conversely, we suppose that there is a distribution n_,, of complex dimension
n/2 and a distribution %, complex conjugate of m,,, having no common direction with

n,,» and they span together a linear manifold of dimension n.

Let 1: be n/2 linearly independent vectors in m,,, and § be n/2 linearly independent
vectorsin 7, ,, . Let q’§} span a linear manifold of dimension n. Then {T, §} is a linearly

5 X X
independent set. Let us define the inverse set (T S}, such that

(2.4a) X=T(X )T+ S(X )8,

which yields

X

(2.4b) ?q) =5(5) = 5,
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(2.4¢) T( s)= 3‘({) =0

Let us put
@5) F(X)= X =2 {TCXT = S(X)S},
Then

X = Ai [T(FX)T -~ S(FX)S ).
x X
But from the equatios (2.4) and (2.5)

x _ X X _ x
T(X)=MT(X), S(X)=—AiS(X).
Therefore
= X RY
X = -2{T(X)T+S(X)S}=-AX.
Thus, we have proved that the manifold admits a Hyperbolic n-struture for X #0 .

Corollary (2.1). In the manifold V,, we have

"w

(2.6a) LX) = L(X),
(2.6b) ; M(X) = M(X)
(2.6c) LMX)) = M(L(X)) = 0.

Proof. Using the equations (2.1)aand (1.1)a, we get
XL (X)= 24X ~iFX) =4 L(X)
= I(X)=KX)

which is the equation (2.6)a

Similarly from the equations (2.1)band (1.1)a, we have
M (X)=2MAX —iFX) =42 M(X),

= M (X)=M(X)

which is the equation (2.6)b.
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Now, fromthe equations (2.1)aand (2.1)b
2.7 (L+M)X = X
Pre-multiplying (2.7) by L and M, using the equation (2.6)a and (2.6)b, we get (2.6)c.

Corollary (3.2). We have

X
(2.8a) L) = T(X)T.

(2.8b) MX)= g(X,)S.

Proof. From the equations (2.1)aand (2.1)b, we get
29 IML-M)(X)=FrX),
Now, comparing the equatios (2.9) and (2.5), we have the equations (2.8)a and (2.8)b.
Theorem (2.2). A necessay and sufficient condition for L(X) = 0=M(X) to be integrable
is that
(2.10a) dL(M(X), M(Y)) = 0,
(2.10b) : dM(L(X), L(Y)) = 0.

for the structure {F} of class ¢*.

Proof. We know that
L(X) =0 be integrable, iff
(dL) (X,Y) = 0 holds and the equation (2.7) reduces to
MX) = X
Thus, we have
(dL) (MX, MY) = 0

Similarly, we can show that the necessary and sufficient condition fo MX = 0 to be
integrable is

dM (LX, LY) = 0.

Theorem (2.3). The necessary and sufficient condition for F of class C=to be integrable
is that Nijenhuis tensor vanishes (Calabi and Spencer, 1951; Eckmann and F) rOlicher,
1951, Hodge, 1931, Yano, 1954, Schouten and Yano, 1955).

Proof. In consequence of the equation (2.6)c, equation (2.10)a assumes the from
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(2.11) LIMX, MY] = 0,
(2.12) = 2AL[2AMX,2AMY ] = 0.

Using the equation (2.1)a in (2.12), we obtain
(2.13) AL 22MX, 2AMY ] —iF [ 2AMX, 2AMY]=0.

Now, using the equation (2.1)b in (2.1 3), we get
(2.14) i{[FX,FY]—)C?[X,Y]—F[X,FY]—F(FX,Y]}

+i{ F[FX,FY]-ZF[X,Y ]+ F(FX.Y]+ X[ X,FY]}=0

From the equations (1 .5) and (2.14), we have
(2.15) =AN(X,Y)+iFN(X,Y } =0

Also complex conjugate of the equation (2.15) satisfies the equation
(2.16) =MN(X,Y)-iFN(X,Y)=0

Adding (2.15) and (2.16), we get

—AN(X,Y )=0
=>N=0

Hence the necessary and sufficient condition for F to be integrable is that Nijenhuis
tensor vanishes.

3. Nijenhuis and Associated Nijenhuis Tensors

Theorem (3.1). /n the Hyperbolic nt-structure manifold, we have

G.H NOXY)==N(Y.X)=[ XY ]-Z[X.Y]-[XY]-[X.T],

i.e. Nijenhuis tensor is skew-symmetric in X and Y.

(G2 N(X.Y)==N(XY)== 22 ([ XY ]-R[XY]-[X.Y ]-[X.V ]},
ie.Nispurein Xand Y.

(33) N(X,Y)=N(X,Y )=—N(X,Y)-

= RIXY]-RIXY]+R[XY]-[XY],
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G NXY)=NXV)=NXY )= Y XT]+[X Y]+ [ XY ]-[X.T]},

G NX Y )=-ZNXY)== [ XY )= R [X Y]+ R[X Y]+ X [X.T]L

Proof. Interchanging the vectors X and Y in the equation (1.5) and using the fact that
[X,Y]=-[Y,X], we obtain the equation (3.1). Barring the vectors X and Y in the equation (1.5),
using (1.1) and (1.5), we get the equation (3.2). Barring X and Y separately in the equation
(1.5), using (1.1) and (1.5) and then equating the resulting equations, we have the equation
(3.3). Proof of the eqautions (3.4) and (3.5) follows the same pattern.

Theorem (3.2). Let us put

G6) PXY)YIXT]-[XY].
Then
(3.7a) P(XY)=ARP(XY)==R[X.Y )+ [X.V]
(3.7b) P(X.¥)==P(XY)=-22(X.Y)-[ X.Y ]
(3.70) PXY)=—P(XY)=X[X Y]+ [XT]"
(3.7d) P(XY)=RP[XY]=X[XY)-X[XT]
Consequently
(3.82) P(X.Y)-XP(X,)Y)=N[X,V]
(3.8b) P(X,Y)+ P(X,Y )=N(X,Y)
(3.8¢) P(X,)Y)-P(X)Y)=N(X)Y)

Proof. Barring the equation (3.6) throughout and different vectors in it, using the
equations (1.1) and (1.5), we get the equation from (3.7)ato (3.7)d.

Now, subtracting the equations (3.7)a from (3.7)d, using (3.2), we have the eqaution
(3.8)a. Proof of the equations (3.8)b and (3.8)c follows similarly.
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Theorem (3.3). Let us put

(39) oxy) Y -Zrxyi-[xy)
Then
(3.10a) XY, )=-Q(X,Y),
(3.10b) O(X.Y,)=20(X,Y),
(.10¢) O(X.Y,)=10(X.Y),
(3.10d) O(X.7)=-0(X.Y)
Consequently,
(.11a) OXY)-2XOUXY)=N(XY)==-N(XY),
(3.11b) O(X.Y)-220(X,¥)=N(X.Y):
(3.11¢) O(X,Y)+Q(X,Y)=N[X Y],
(3.11d) O(X.Y)+O(XY)=N(XY)=N(XY).

Proof. Barring the eqation (3.9) throughout or different vectors in it, using the equations
(1.1)and (1.5), we get the equations from (3.10)a to (3.10)d.

Now, subtracting the equation (3.10)b from (3.10)d, we get

(G.12) OXT)-R2OXY)==R[X Y]+ R [X Y]+ [XY]+X[X Y]

Using the equation (3.2) in (3.12) and using the fact that Nijenhuis tensor is pure inX
and Y, we get the equation (3.11)a. Similarly, we can obtain the other equations.

Corollary (3.1). In the Hyperbolic n-structure manifold, we have
(.13a) P(X.Y)= QX F)

(3.13b) P(X.¥)=0(X.Y)

(3.13¢) 2 Pxy)=—gX7)
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(3.13d) P(X,Y )=-2O(X,)Y)

(3.14e) Pex,y)=-0(X.¥)

Proof. Proof of this corollary is obvious from the theorems (3.2) and (3.3).

Corollary (3.2). In the Hyperbolic r-structure manifold, we have

(3.14a) P(X,Y)+OQ(X.Y)=N(XY)

(3.14b) P(X.Y)+O(X,Y)=—N(X,Y)=N(X,Y)
(3.14¢) P(X.Y)+O(X, Y )=—N(X,Y)=N(X.Y)
(3.14d) PXY)+O(X,Y )= N(X,¥ )= N(X,Y).

Proof. Proof of this corollary is evident from the theorems (3.1), (3.2) and (3.3).

Theorem (3.3). Let us put

G yx )L XY [XT]

Then

(3.16a) VIX.Y)=-V(V.X)=={[ XY J+[ XY ]}

that is V is skew-symmetic in X and Y.

(3.16b) VXY )=-2V(XY)=-2{ XY ]+[ XY ]},
(3.16¢) VXY )=V(X.Y)==-2{[ XY ]+[ XY ]},
(3.16d) VIX.Y)=V(X,¥)=2[XY]-2[XT]
(3.16¢) V(X T)=-AVIXY]= Z[XY]+X[XY],

Consequently,

(3.17a) VIX,Y)+V[XY]=N[XY],
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(3.17b) VIX,Y)+V[X,Y]=N[XY],
(.17¢) VIX.Y)-V(XY)=N[X.Y],
(3.17d) V(XY )-V(X,Y)=N[X.Y],
(3.17e) VIX.Y)+ 2VI[XY]=NXTY),

Proof. The proof follows the pattern of the proof of the theorem (3.2).

Theorem (3.4). Let us put

(3.18) ROXY) L (XY ]-R1xy]
Then
(3.192) RIY.X)=-R(X.Y)=—[XY]+2[XY]

i.e. R is skew-symmetric in X and Y.

(3.19b) RXY)=-XPRXY)=-X{XT]-F[XY]}

(3.19) RXY)=RXY)=-A[XY]-2[X]Y],

(3.19d) RIX.Y)=RXY)=-2[XY]-Z[X]Y].
Consequently

(3.20a) RIX.Y)+2R(X,Y)=N(X]Y),

(3.20b) RIX,)Y)-R(X,Y)=N(X)Y),

(320c) RIX)Y)-R(X,Y)=N(X.Y)=N(X]Y).

Proof. The proof follows the pattern of the proof of the theorem (3.2).

Corollary (3.3). In the Hyperbolic n-structure manifold, we have



(321a)

(3.21b)

(321¢)

(321d)
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V(X.Y) = R(X,Y),
V(X,Y) = -2 RX)Y),
V(X,Y)=RX)Y),

VIXY)=RX)Y).

Consequently

(3.22a)

(3.22b)

(322¢)

(3.22d)

(3.22¢)

RIX,)Y)-V(X)Y)=N(X)Y),
RIX,Y)-V(X.Y)=N(X.Y),
RIX,)Y)-V(XY)=N(X)Y),

RIXY)-V(X)Y)=N(X,)Y),

RIX.Y)=V(X.Y)=N(X,Y),

Proof. Proof'is obvious from the Theorems (3.1), (3.3) and (3.4).

Theorem (3.5). In Hyperbolic R -structure manifold, we have

(3.23a)
(3.23b)
(3.23¢)
(3.23d)
(3.23¢)
(3.230)
(3239

(3.23h)

'N(X.Y,Z)= ~N(Y,X,Z) = —a(N(Y,X),Z),
a(X.Y)N(XYZ)=-a(X,Y)N(X,)Y Z)
a(X,Y)'N(X,Y,Z)=-a(X,Y)' N(X,Y,Z),
aX,Y)'N(X,)Y,Z)=—a(X,Y)N(X,Y,Z)
a(X,Y)'N(X,Y,Z) =a(X,Y ) N(X,Y,Z)
a(X,Y)N(X,Y,Z) =a(X,Y)N(X,Y,Z)

a(X.Y)a(X.Y)'N(X.Y,Z) =-a(X,Y )a(X.Y)'N(X,Y.Z),

a(X,Y)'N(X,Y.Z) =a(X,Y))N(X,Y,Z),
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(3.23i) a(X,Y)N(X,Y.Z) =-a(X,Y))N(X.Y,Z)

(3.23) alX,Y)'N(X,Y,Z) = ~a(X,Y)'N(X,Y,Z),

Proof. Using the equation (3.1) in .7, ‘we have the equation (3.23)a. In view of the
equations (3.3), (1.3)aand (1.7), we have

(324) 'N(X.Y,Z) =-A'N(X.Y,Z).

Now, putting the value of A in (3.24) from (1.3)a, we get the equation (3.23)b. Equation
(3.23)c can be obtained on the same pattern.

In view of the equations (3.2) and (1.7), we get

(3.25) 'N(X,Y,Z) =-2'N(X,Y,Z).

Putting the value of A2 in (3.25) from the equation (1.3)b, we get the eqation (3.23)d.
Proof of the remaining equations follow the same pattern.

Theorem (3.6). /n the Hyperbolic R -structure manifold, we have
(B26) a(X,Y){'N(X.Y.Z)+'N(X,Y,Z)+'N(X,Y,Z )}=—a( X, Y)N(X,Y,Z).
G2 a(X,Y){'N(X,Y,Z)+'N(X,Y,Z)+'N(X,Y,Z )}=—3a( X, Y)N(X,YZ)

Proof. Adding the equation (3.23)b, (3.23)c and (3.23)e, we get the eqaution (3.26) and
adding the equations (3.23)d, (3.23)i, and (3.23)j, we get (3.27)

Theorem (3.7). Inthe Hyperbolic R -structure manifold, we have
(328) a(X,Y)P(X,Y )-a(X,Y)P(X,Y)=a(X,Y)N(X.,V ),
(329) aAXY)UXY)-a(X,Y)Q(X,Y)=a(X,Y)N(X,Y),
(330) alX,Y)O(X,Y)-a(X,V)O(XY)=a(X,Y)N(X.V),
G3D) X V)PXY)=-a(X,Y)X.T),

(332) a(X,Y)P(X,Y )=—a(X.Y )O(X.Y),

(3.33) a(X,Y)P(X.Y)+a(X.Y)Q(X.Y )=-a(X, ¥ )N(X.Y),

(334 a(X.Y)V(XY)+a(X.7)V(X.,¥ )= ~a(X,Y)N(X.V),
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(3.35) a X Y)RIX,Y )+a(X.Y JR(X,Y)=a(X,Y)N(X,Y ),

(3.36) alX.Y)V(X.Y)=—a(X,Y )R(X,Y)
where P, Q, V and R are defined by the equations (3.6), (3.9), (3.15) and (3.18) respectively.

Proof. Putting the value of A? from the equation (1.3)b in the equation (3.8)a, (3.11)a,
(3.11)b, (3.13)c,(3.13)d,(3.14)d, (3.17)e, (3.20)aand (3.21)b, we have the equations from (3.28)
t0(3.37).
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