Vol. 6 (2002), No. 2 Journal of International Academy of Physical Sciences pp. 103 -116

Common Fixed Point for Uniformly Intimate Pair of Mappings in
Semi-Hausdorff Spaces and its Applications

B.P. Tripathi
School of Studies in Mathematics, Pt. Ravishankar Shukla University, Raipur

(Received September 20, 2002)

Abstract: In this paper, we have introduced the concept of “Uniformly intimate”
pair of mappings in semi-Hausdorff d-complete topological space. Some common
fixed point theorems in semi-Hausdorff d-complete topological space have been
proved with above condition. Also, as application, common fixed pomt theorems
for expansion mappmgs have been glven Our results generalize and improve the
result$ of Fisher', Kang and Rhoades?, Popa® and Khan et al*,
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1. Introduction

In 1976, Jungck® generalized the well known Banach fixed point theorem for a pair
of commutmg mappings. The concept of commuting maps was further generalized by
Sessa® in 1982 when he introduced pair of weakly commuting maps. Commuting maps are
weakly commutmg but converse is not true in §eneral Those are further weakened by the
compatibility’ and the compatibility of type (A)®.

Hicks and Rhoades®® proved some fixed point theorems in a d-complete topological
space (non-metric setting) where the distance functlon used need not satisfy triangle
inequality. Later, on this line Cho, Sharma and Sahu'® established some existence results
under semi-compatibility condition.

In 1965, Murdeshwar and Naimpally'' introduced the concept of semi-Hausdorff
space deriving from topological space. Wherein they have established that the semi-
Hausdorff condition is strictly, stronger than the T-axioms and thus it is between the T, and
T, axioms. For us, this was an interesting space structure in which the existence of fixed
point could be studied. With this intention first we have introduced the concept of
uniformly intimate condition and then study some existence results in semi-Hausdorff d-
complete topological space using uniformly intimate condition wherein the commutativity
has been removed by non-commuting pair of mappings.
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2. Preliminaries

Let (X,7) bea topological space and d: X x X —[0,%) be such that d(x,y)=0

o8]
if and only if x=y. X is said to be d-complete if D d(x,,%p41) <® implies that the
n=|
sequence {xn} is a Cauchy sequence in X. A mapping 7: X — X is w-continuous at x if
x, —> x implies Tx, — Tx . The study of d-complete topological spaces have been done by
Kasahara'? and Iseki' in detail.

Definition 2.1: A symmetric function on a set X is a real-valued function d on
X x X such that :

6] d(x,y)=0,and d(x,y)=0 ifand only if x =y,

(i)  d(x,y)=dy,x).
Let d be a symmetric function on a set X, and for any £>0 and any xe X, let

Ux(g)z{yeX:d(x,y)<g}.

In view of Hicks and Rhoades’, we can define a topology 7(d) on Xby Uer(d) if
and only if for each xe U, there exists a U, (e)c U . A symmetric function d is a semi-
metric if for each x € X and each £>0, U,(e) isa neighbourhood of x in the topology
7(d) .

A topological space X is said to be symmetrizable or semi-metrizable according as
its topology is induced by a symmetric function or a semi-metric function on X.

The d-complete symmetrizable space forms an important class of d-complete
topological spaces. Other examples of d-complete topological spaces are given by Hicks
and Rhoades’.

Definition 2.2: A topological space X is said to be semi-Hausdorff iff every
sequence in X has atmost one limit'".

Murdeshwar and Naimpally'" established the following theorems:
Theorem A: Every Hausdorff space is semi-Hausdorff, but not conversely.
Theorem B: Every semi-Hausdorff space is T, but not conversely.
Theorem C: Every first countable semi-Hausdorff space is Hausdorff.
Hicks and Rhoades’ proved the following interesting theorem:
Theorem D: Let (X,7) bea Hausdorff d-complete topological space and f, h be w-
continuous self-mappings on X satisfying d(hx, hy) € Q(m(x,y)) for all x, y in X, where
m(x, ) = max{d(fr, ). dfe ) A )]
and Q be a real-valued function satisfying the following conditions:

(a) 0<QO(y) <y foreach y>0 and Q(0)=0,
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(b) gy)= —“(y *JQ)(y)) is a non-increasing function on (0,),
)

(c) .fg(y)dy < foreach y; >0,
0

(d) O(y) is non-decreasing.

Suppose also that

(e) Sfand h are commuting,

) WX)c f(X).

Then f and h have a unique common Sixed point in X.

Definition 2.3: Let 4 and S be self-maps of a semi-Hausdorff d-complete
topological space (.X,r). The pair {A,S} is said to be Uniformly S-intimate iff

d(ASu,SSu) < d(Au,Su), forall ue X .

3. Main Results

Theorem 3.1: Let 4, B, S and T be self mappings of a semi-Hausdorff d-complete
topological space (X,t) satisfying the following conditions:

3.1 AX) S T(X) and B(X)c S(X),

(3.2) d(Ax, By) < Q(m(x, y)) ,

for all x, y in X, where m(x, ¥) = max {d(Sx, Ty),d(Sx, Ax),d(Ty, By)} and Q satisfying the
conditions (a), (b), (¢) and (d),

3.3) The pairs {A,S} and {B,T} are Uniformly S and T-intimate respectively,
(3.4) A, B, S and T are w-continuous.

Then A, B, S and T have unique common fixed point in X,

Proof: Let x; be an arbitrary point in .Y, there exists a point x| in X such that
Axg =Tx; as A(X) < T(X). For this point x;, we can choose a point x, in X such that
Bx; =8x; as B(X)< S(X). Thus repeating the foregoing arguments, we define two
sequences {x, } and {¥n} in X such that

Yop = Axy = Tx, 4
(3.5) 2n n n

yZ"H:sznH:Sszz
foralln =0,1,2,....

For simplicity, let d,, = d(y,,,y,.) and applying (3.2), we have
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dyps1 = d(Axpp12,Bx2441)
< Qmax{d(Stan 2, T2 )1 d(S%2042 5 X242 ), d (T 2415 Br2me))))
which implies
(3.6) dynnt < Qmax{(dzn, dypn)}-

Suppose that d5,,,| > d,,, for some n. Then from (3.6), we have

dopry < Xdapa1) < dopat s

which is a contradiction. Therefore, from (3.6), we have
daps S Qdan) .

Similarly, we have
daprz S Qdapa)-

So, in general, for dy > 0, we have
3.7) d, <Qd,_1), n=12,...

We define a sequence {t,} of positive real numbers such that 1, =Q(t,) with
ty =dy > 0. By (a), we have 0<1,, <t, <...<t;, n21. Moreover, by (b) and (c), the
series ) t, converges.

We shall now show that d, <t,,;, n21. From (3.7), for n = 1, we have
d; < (dg) = O(t;) = t, and the desired inequality is valid for n = 1. Assume that it is true
for some »n > 1. Again from (3.7), we have

dy SOy ) SQty) =ty -

Since 3¢, is convergent, it follows that Y d(y,,,1) is also convergent. Since X is d-
complete, { ,,} converges to some ze X and so the subsequences {sz,, }, {sz,ﬁ, },
{Sx?_n} and {Tx2n+1} of {y,,} also converge to the point z. Let there exist some points u
and v in X such that x5, —> # and x5,,; —v as n— . Then w-continuity of 4, B, § and
T imply Ax,, — Au, Sxp, —>Su, Bxy,, — Bv and Txy,, — Tv. Since X is semi-
HausdorfT, therefore we have

z=Au=Su=Bv=Tv.
Since the pair {4,S} is Uniformly S-intimate, therefore
d(ASu,SSu) < d(Au,Su) .
which implies that 4z = Sz . Now using (3.2), we have
d(Az,z) = d(Az, Bv)
< QO(max{d(Sz,Tv),d(Sz, Az),d(Tv, Bv)})
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< O(d(Az,z)) < d(A4z,z2) .
which is a contradiction, so Az =2z .

Similarly when the pair {B,T} is Uniformly T-intimate, we obtain z=Bz=Tz.

Therefore z is a common fixed point of 4,B,S and T . Uniqueness easily follows from
(3.2).

Theorem 3.2: Let 4, B, S and T be the mappings from a semi-Hausdorff d-complete
topological space (X,t) into itself satisfying the conditions (3.1), (3.3), (3.4) and the
Jollowing:

3.8) d(Ax, By) < k(m(x,y)) for allx, y in X,
where k: [0,00) — [0,0) is a function such that k(0) = 0, k(t) < t for all t in (0,0) and k is

o0
non-decreasing with Y k" (t) <o for all t € (0,0) ( k is not assumed to be continuous).
n=|

Then A, B, S and T have a unique common fixed point in X.

Proof: For an arbitrary point xq in X, by (3.1), we can choose a sequence {y,}
defined by (3.5) and from (3.5) and (3.8), we obtain

dyp1 < k(dpy,) and dp,yn < k(dypyy)
foralln=20,1,2,....
By induction, for dy >0,

d, <kd(d,;)s ... <k"(dy)

foralln=1,2,....

o«
Now Y. d(¥,,Vne) < implies that {y,,} is a Cauchy sequence in X, which means
n=l
that it converges to some point z in X, since X is semi-Hausdorff d-complete. As in the
proof of Theorem 3.1, it can be shown that z is a unique common fixed point of 4, B, S and
T in X. This completes the proof.

One can also have Theorem 3.1 as a special case of Theorem 3.2, where & forces the
w-continuity condition for all 4, B, Sand T.

In the following theorems, all of 4, B, S and 7 need not be w-continuous.

Let 3 be a family of mappings f from [0,00) * into [0,00) such that each fis upper
semi-continuous, non-decreasing in each coordinate variable and for any

t>0, f(t,t,0)=r{t) <t and §r"(t)<oo,

n=]

where r be a mapping from [0,0) into itself.
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Theorem 3.3: Let A, B, S and T be mappings from a semi-Hausdorff' d-complete
topological space (X ,t) into itself satisfying the conditions (3.1), (3.3) and the followings:

3.9) there exists an f € 3 such that

d(Ax, By) < f(d(Sx,Ty),d(Sx, Ax),d(Ty. By))
Jorallx, yinlX,
G.10) one of S and T is w-continuous.

Then A, B, S-and T have a unique common fixed point in X.

Proof: For an arbitrary point xy € X, we can choose a sequence {y,} defined by
(3.5). From (3.5) and (3.9), we have

dypey = d(Axypi0, Bxypy)

Jd(Sx242:Tx2p41), d(SX2p025 A%2402)s A(Tx2p015 BXpi1)) s

IA

which implies
(3.11) dype1 < fldan,dapir>day)

Suppose d5,,; > d5,, for some a. Then from (3.11), we have

0 <dyps1 < f(daprydonets dapet)
<r(dana)
<dyps1>
which is a contradiction. Hence from (3.11), we have
dyppy £r(dy,) foralln=0,1,2, ... .
Similarly, we have
dypen Sr(dyyy) foralln=0,1,2,... .

So, in general, for dy >0,

d, <r(d,_))<..<r"(dy)

w©
forall n =10, 1, 2, ... . Since Y.r"(s) is convergent for each ¢ > 0, it follows that
n=]
o]
> d(¥,, V1) is convergent. Since X is semi-Hausdorff d-complete, {y,} converges to
n=1
some point z in X and hence the subsequences {sz,,}, {sz,m}, {sz,,} and {Tx2n+1} of

{y,,} also converge to the point z.
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Now, suppose that T is w-continuous. Since the pair {B,T} is Uniformly T-intimate

and the subsequences {sz,m}, {sz,,+]} of {y,,} also converge to the point z. Therefore,
we have

d(BTx341, TTXp041) S d(Bxg,p41. Txap1) .
Letting n — o, we obtain

BTxy,.0, TTxy,0q > Tz .
Putting x = x,,, and y = Tx,,,; in (3.9), we have

(3.12) :
d(szn, BszrH-l) < f(d(sz,,, TTerH,l ), d(SX2n,AX2n),d(TTX2n+l,BTX?2n+] )) 5

Letting n — o, we have

d(z,Tz) < f(d(z,72),0,0)

IN

r(d{(z,Tz))
< d(z,7Tz),
which is a contradiction and so 7z =z .
Again, replacing x by x;,, and y by z in (3.9), respectively, we have
(3.13) d(Axy,, Bz) < f(d(Sxs,,Tz),d(Sxy,, AX>, ), d(Tz, Bz)) .
As n — oo, we have

d(z, Bz)

IN

f(0,0,d(z, Bz))
r(d(z, Bz))

IA

A

d(z,Bz),
which means that Bz = z. Since B(X) < S(X), there exists a point « in .X such that
Bz=8Su=r:.
By (3.9), we have
d(Au,z) = d(Au, Bz)
< f(d(Su,Tz), d(Su, Au), d(Tz, Bz))
= £(0,d(z, Au),0)
< d(z,Au),

which is a contradiction and so Au =z . Since the pair {A,S} is Uniformly S-intimate and
Au = Su = z , then we have
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d(ASu,SSu) < d(Au, Su)
which implies that ASu = SSu and hence Az = Sz.

By using (3.9), we have
d(Az,z)

d(Az, Bz)

IA

f(d(S8z,Tz), d(Sz, Az), d(Tz, Bz))
f(d(z,Az),0,0)
r(d(Az, z))

A

< d(Az,z),
which is a contradiction, so Az = z . Therefore,
Az=Bz=8z=Tz=1z,

that is, z is a common fixed point of 4, B, S and 7. The uniqueness of the common fixed
point z follows easily from (3.9). Similarly, we can prove the theorem when S is w-
continuous. This completes the proof.

Corollary 3.1: Let A, B, S and T be mappings from a semi-Hausdorff d-complete
topological space (X,t) into itself satisfying the conditions (3.1), (3.3) and (3.10) and

there exists an a < (0,1) such that
(3.14) d(Ax, By) < am(x,y)
forallx, yin X. Then A, B, S and T have a unique common fixed point in X.

Proof: If we define a mapping f :[0,00)3 — [0, ) by
St t2,t3) = amax{t),ty,t3} then f 3 and so by Theorem 3.3, this corollary follows.

Let now @ denote the family of all functions ¢:[0,0) — [0,0) which is non-

[eo]
decreasing, upper semi-continuous from the right with ¢(0) =0, ¢(r) <t and Y ¢"(f) <o
n=1
for each > 0.

Corollary 3.2: Let A, B, S and T be mappings from a semi-Hausdorff d-complete
topological space (X,t) into itself satisfying the conditions (3.1), (3.3), (3.10)and

(3.15) d(Ax, By) < ¢(m(x, y))
Jor all X, yeX and ge ®@. Then A, B, S and T have a unique common fixed point in X.
Proof: If we define a mappings f: [0,oo)3 —[0,) by

S(t,t0,83) = g(max{t,17,43}) ,

then f e J and in view of Theorem 3.3, this corollary follows.
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Remark 3.1: If we replace the condition (3.3) by ASx = SAx and BTx = TBx for all
x € X in Corollary 3.1, then we get the original theorem of this type proved by Fisher' for
a complete metric space in this new setting.

Remark 3.2: All corollaries and Theorem 2 of Fisher' can be formulated with
respect to the stronger condition (3.9) and the uniformly intimate concept in this new
setting.

Remark 3.3: It can be verified from the examples of Fisher' to see that the condition
(3.14), the hypothesis of uniformly intimate pair and the condition that one of mappings S
and T is w-continuous can not be omitted from Theorem 3.3.

Remark 3.4: If we let m(x,y)=d(Sx,Ty) in Corollary 3.2, and S and T are

surjective, then we obtain a result under the uniformly intimate concept in this new setting,.
The original theorem of this type was proved by Kang Rhoades” under the compatibility
concept in a complete metric space.

Example 3.1: Let X =[0,1] with symmetric function d on X defined by
d(x,y) =|x~ .

. 2
Let A,B,S,T:X — X such that Ax=Bx=x—2— and Sx=Tx=x%.

It is easy to verify that all the conditions of Theorem 3.1 are satisfied and O is unique
common fixed point of 4, B, Sand T.

4. Applications

Fixed points for expansion mappings: Let (X,7) bea semi-Hausdroff topological
space, N the set of all positive integers and ¥ the family of all functions

v [0,00)3 — [0,0) satisfying the following properties:
(-1 w is continuous in ([0, oo))3
(w-2) w(LL)=h>1 where he[0,0)
(v -3) let a,f €[0,0) be such that
-9 azy(B.p.a)=hp
(w-5) azy(B,a,py=hp
(w-6) w(a,0,0)>a forall @ #0.

Proposition 4.1: Let A, B, S and T be mappings from semi-Hausdorff topological
space (X,t) into itself such that the pairs {4,S} and {B.T} are uniformly S and T-
intimate respectively. Suppose that for all x, y in X and y € ¥ such that:

4.1) d(Sx,Ty) = w(d(Ax, By), d(Ax,Sx), d(By,Ty)).



112 ‘ B. P. Tripatht
If there exist u, v and z in X such that Au=Su=Bv=Tv=1z then Az=Bz=8Sz=Tz=z.
Proof: Since the pair {4,S} is uniformly S-intimate and Au = Su =z,
d(ASu, SSu) < d(Au, Su) ,
which implies that 4z = Sz . From (4.1), we have

d(Sz,z) = d(Sz,Tv)

[\

w(d(Az, Bv), d(Az,Sz). d(Bv,Tv))

Z y(d(Sz,2),0,0)
> d(8z,z by property (v —6),
which is a contradiction. Therefore Sz = z . By symmetry we have Bz =7z =z.

Theorem 4.1: Let A, B, S and T be mappings from a semi-Hausdorff topological
space (X,7r) into itself satisfying the conditions (3.1), (3.3) and (4.1) and S(X) is d-
complete. Then A, B, S and T have a unique common fixed point in X.

Proof: For an arbitrary point x; in X, we can choose a sequence {yn} defined by
(3.5). Now from (3.5) and (4.1), we have

d2r1 = d(Sx2n+2* Tx2n+l)

2 p(d(Ax2,10. Bxapi). d(Ax2,40.5%042 ) d(Bxpps1:Tx241))
= W(dype15d2m41-921)
2 hdy,g by property (y -4).

This implies

drpe1 SV hdy,.
Similarly, we can get

dypea SV hdyyy .

So, in genetal, we have for dy >0

d, <Vhd, < .. <1/h"dg

e o]
for all ne N. Since h>1, this implies that |im d,, =0. It follows that > d(y,,y,.) is

H—>0 =
convergent.

Since in addition, S(X) is d-complete, {yn} converges to some z in S(X) and hence
the subsequences {A4xs,,}, {Bx2n+]}, {szn} and {Tx4,,} of {y,,} also converge to z.

Let Su =z for some x in X. Putting x =u and y = x;,,; in (4.1), we obtain
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4.2) d(St, Txgs1) 2 W(d(A, Bxyyny), d(Au,Su), d(Bxgpi Teomen)
Letting n — «, we have
02 w(d(Au,z), d(Au,z),0)
2 hd(Au,z) by property (v -4),
which implies Au=2z.

Since z = Au e A(X) c T(X), there exists a point v in X such that 4u = Tv . Again,
replacing x by w and y =v in (4.1), we obtain

0 = d(Su, Tv) = w(d(Au, Bv), d(Au,Su), d(Bv,Tv))
= w(d(z,Bv),0,d(Bv,2))
> hd(Bv,z), by property ( -5),

which implies Bv=z. Therefore, we have Au=Su=Bv=Tv=z and hence by
Proposition 4.1, it follows that z is a common fixed point of 4, B, Sand T.

Let us suppose that there exists a second common fixed point w of 4, B, § and T.
Then from relation (4.1), we have

d(z,w) = d(Sz,Tw)

v

w(d(Az, Bw), d(Az,Sz), d(Bw,Tw))
w(d(z,w),0,0)

> d(z,w) by property (y -6).

I

Thus, there arise a contradiction.

Hence w cannot exists and z is a unique common fixed point of 4, B, S and 7. This
completes the proof.

Remark 4.1: Theorem 4.1 improves and generalizes Theorem 1 of Popa® and
Theorem 3 of Khan, Khan and Sessa®, in a semi-Hausdorff d-complete topological space
under uniformly intimate condition.

Corollary 4.1: Let A, B, S and T be mappings from semi-Hausdorff topological
space (X,t) into itself such that, the pairs {A,S} and {B,T} are uniformly S and T-
intimate respectively and satisfying the conditions (3.1), (4.2) and following:

There exists a, b, ¢ €[0,00) witha>1,b<1,c<landa+b+c> 1 such that
(4.3) d’ (Sx,Ty) 2 a.d” (Ax,By) + bd" (Ax,8x) + c.d" (By,Ty)
for allx, y in X, wherer > 0. Then A, B, S and T have unique common fixed point in X.

Proof: Let us further define the i : [0,00)3 — [0,) as follows:
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Wty ty,t3) = (at] + bty + i)V

Then w ¢ ¥, and thus by theorem 4.1, this corollary follows.

Remark 4.2: It should be noted that Corollary 4.1 improves and generalizes
Theorem 1 of popa', in non-metric setting.

1f we put b= c =0 in Corollary 1, we obtain the following:

Corollary 4.2: 4, B, S and T be mappings from semi-Hausdorff d-complete
topological (X,t) into itself such that the pairs {A,S } and {B,T} are uniformly S and T-
intimate respectively, satisfying the conditions (3.1), (4.2) and the following:

There exists a constant A € [0,) with A >1 such that
d(Sx,Ty) 2 A.d(Ax, By)
forallx, yinX Then A, B, S and T have a unique common fixed point in X.

Remark 4.3: If we define y as in proof of corollary 4.1, then the result obtained in

this new setting, which improves and generalizes Theorem 2.4 of Pathak, Kang and Ryu'.
The original theorem of this type was proved by these authors in a complete metric space.

Theorem 4.2: Let A, B, S and T be mappings from semi-Hausdorff space (X,7)
into itself satisfying the conditions (3.1), (3.3), (4.2) and following:

(4.4) $(d(Sx, Ty)) = max{d(Ax, By), d(Ax,Sx), d(By,Ty)}
for allx, y in X, where g« ®. Then A, B, S and T have a unique common fixed point in X.

Proof: For an arbitrary point x; € X', we can choose a sequence { ,,} as defined by
(3.5). Then, by (3.5) and (4.4), we have

4.5) #(drn) = H(d(Sx2p42,T¥2011))
> max{d(Axyn42, Bxane)s d(A%2p42, 552042 )s A(BXopi1, T2met)}
= max{dy1,don} -
Now, suppose max{d2n+1, dz,,} = d3,, then from (4.5), we have
#(dry) 2 day
which is a contradiction. Hence, we have

max{daps1,d2n} = danst -

Therefore from (4.5), we have

d2n+l < ¢(d2n)s

and similarly

d2n+2 < ¢(d2n+l ) )
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So, in general for dy >0,and ne N,
d, < $(dyy) S ... S ¢ (dyi) .. S8"(dp).

[s o] . s 0]
Since Y 4" (¢) is convergent for each £> 0, it follows that > d(y,, V) is convergent. In
n=1 n=l

addition since S(X) is d-complete, sequence {y,,} converges to some z in S(X) and
hence the subsequences {sz,,}, {Bx2n+1}, {sz,,} and {Tx2n+1} of {y,,} also converge to
Z.

Let Su = z for some % in X. Putting x = # and y = x,,,, in inequality (4.4) and then,
letting limits as n —> o, we obtain:

#(0) = 0> d(Au,z)

which implies A4u = z. Since in addition A(X)c T(X), there is a point v in X such that
Au = Tv = z . Again, replacing x by u and y by v in inequality (4.4), we obtain

#(0) =0 = d(Su,Tv) 2 d(Bv,z)

which means that Bv = z. Therefore, Au=Su=Bv=Tv=z. Since, the pair {A,S} is
uniformly S-intimate. Then

d(ASu,SSu) < d(Au,Su)
which implies that ASu = SSu, thatis Az =.5z.
By property (4.4), we have:
$(d(Sz,2))

I

#(d(Sz,Tv))
max {d(Az, Bv), d(Az,Sz), d(Bv,Tv)}

v

d(Sz,z)

which is a contradiction, since for cach 1> 0, #(t) < t . Therefore Sz =z, and by symmetry

Bz =Tz = z,, which shows the existence of z as a common fixed point of 4, B, S and T.
Uniqueness of common fixed point is obvious.

Corollary 4.3: Let A, B, S and T be mappings from semi-Hausdorff d-complete
topological (X,t) into it self such that the pairs {A,S } and {B,T} are uniformly S and T-
intimate respectively and satisfying the conditions (3.1), (4.2) and at least one of the
following conditions:

Forallx,y € X
(4.6) $(d(Sx,Ty)) 2 d(4x, By),

@.7 #(d(Sx, Ty)) = 1/2 [d(Ax, By) + d(Ax,Sx)],
(4.8) #(d(Sx,Ty)) 2 1/2 [d(Ax, By) + d(By,Ty)],
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P(d(Sx,Ty)) 2 1/3 [d(Ax, By) + d(Ax,Sx) + d(By, Ty)] .

Then A, B, S and T have a unique common fixed point in X.
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