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Abstract : The present work is concerned with a two unit system under the effect of
common causg and circumstantial failures in which manual operations are required for the
separation of the failed unit form the system and installation of the unit after repairs.
Supplementary variable technique has been used to derive expressions of interest and
numerical computations have been performed to validate the resuits.

Introduction

One of the essential requirements for the estimation of reliability of a system is the
observance of the conditions under which it operates. Most of the studies with redundant
components are based on automatic replacement of failed components with the new one.
Even in the present age of information technology, there are industries working with
systems which adopt the manual replacement of the failed components. In such
organizations, once a component fails, the system has to be stopped from functioning for
the removal of the failed components. In a similar manner the system needs to be stopped
when the component is to be reinstalled after completion of repairs. The time lost in
replacement and installation has not been accounted for in most of the conducted studies.
This over estimates the reliability of such systems.

Present paper is devoted to the study of a two-unit system under the effect of
circumstantial and common cause failure that requires manual operations for the
separation of failed unit from the system and installation of the unit after the repairs in an
effort to obtain more realistic reliability estimates.

Model Description and Underlying Assumptions

The state transition diagram of the present system is given in Fig. 1. The state S, of
the diagram consists of two units N, and N, in perfectly operating condition. The system
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is assumed to remain in operative state as long as even a single unit remains operative.
Once a unit fails, it can be repaired only after separating it from the main system. For this
task, the system needs to be stopped for a constant time. After competition of repairs,
once again system is made non-operational for sometime to reinstall the repaired unit. The
above two situations are represented in the form of transition between the states S|-S, and
53-8y in the diagram. )

The system besides its mechanical failure, may also suffer from the circumstantial
and common cause failures. The failed states having failures on account of CF and CCF
are represent by Sc and Scc respectively and these can be arrived from any of the up states
Sy represents the state of mechanical failure. We assume a general repair time distribution
from the states Sy and Scc for its transition to the perfectly normal state after the repairs.
Ofcourse when the system is down under the effect of CF, it after recovery, transits back
to the state from where it suffered CF.

Notations
No : Operating unit
N5 : Standby unit
Ny : Failed unit under repair,
Nyi: Repaired unit to be installed
Np : Failed unit to be separated from the system
A : Constant fa}lure rate of the two identical units
Ac : Constant failure rate due to circumstantial and common cause failure
p : Probability that the failure is CF
g = (1 — p) : Probability that the failure is CCF
w : Constant rate of separation
p1 : Constant repair rate of the unit
u2 : Constant repair time for CF
r : Constant rate for installation

a(x)/B(x) : Repair rates from state 7'/ CC to state 0.

S, () = jk(x)exp[-sx - J:) k(x)dx}dx,

k = a, B : The integral | means definite integral from O to %, unless otherwise
mentioned.

1 =8, (s)
Hi@) = —5 k=0 B
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1=}\«+}\.c, 1]=l+}\.c+p,1

Pr (s + w)(s + I}) + whA}

A(s) = {(s + 2“2) (s + 1]) = pkc “2} (s +w)

Hy A(S) (s + w) + wA

BO == I)(s + w)

Mathematical Formulatfon of the Problem

Using above notations and the state space diagram of the model given in Fig. 1, one
gets to the following system of differential equations for the process :

dP, (i)
(1 —;t— + (x + ph, + qu)Po(t)

= P30 + g Po() + Ja @) Prtx, Ddx + [B @) P (x Dk

dP,(®

dP5 (D
T, (o0 e e ) a0 = a0 w0

dP; (1)

dr +r.P3(t)=H1P2(t)

dP;t(t) + (uz + Hz)PC o = pxc[PO @ + P, (t)}

[% N 5‘9; N a(x)]pF(x, 0 =0 [% ‘ % + B(x):tPcc(x, 0 = 0.

With boundary condition
@ PrO, ) = AP (05 P, 0 = ghe[ Py @ + P20 ].
Initial conditions

©) Py(0) = 1; P, (0) = Py(0) = P3(0) = P,(0) = P,.(0) = Pr(0) = 0.
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Solution of the Differential Equations

To solve the system of differential equations alongwith the initial and boundary
conditions given from (1 — 3), we take the Laplace transforms of these equations and the
boundary conditions. This reduces the differential equations into the following system of
algebraic equations :

) G+ DPy() =1 + rPy(s) + WP, (s) + | () Pr(x, s)d

+ [Bo) P, (x, 5)
¢+ w)Pl (s) = kPO(s)

G+IPPGE) =P ) +wPi(s)
(s+r)P3(s)=p|P2(s)
(s+2p2)PC(s)=pxc[P0(s)+P2(s)]
5 I:s+i+a(x)}P x,s)=0 [s+—a—+ B(x)}P x,5)=0
ax 3% ox it T8
(6) Pr(0, $) = APy(s); P(0, s) = q?»c[PO ©) + P, (s):l.

Solving above equations for Pj(s), Jj=0,1,2,3,C F, CC one gets the following Laplace
transform of state probabilities :

1 A
U N PO GreEm 29 TR
__mB® A(s)
P36 = G+ PNK(EG) Pels) = K ()
A B (5) Hy (5) Al + B H

PO = e Pa@ =T LR (s()S)] p ()
where
®) K@®=6+1D-rpB@e/(s+7r -pyA@) - AB(s)So(s)

= gh (1 + B@IS;0).
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Laplace Transforms of Up and Down State Probabilities

The laplace transforms of the probability that at time ¢, the system remains in up
state (operable state) is given by following expressions :

Pup(s) = Py(s) + Py(s)

[+ B©)]
= TKG)

P (8) = Py (s) + Py(s) + P.(s) + Pr(s) + P, (s)

wined A mEe AB (s) H A B
= Xo (s+w)+ G + A@) + AB(S) Hy (s) + gr {1 + ()} Hy (s)

It can easily be verified that
1
Pup () + Pa'own () = ;

Availability Analysis

As a particular case, let us assume that the repairs follow exponential time
distributions. We cah then write

Su() = —2—  55() = ——

5+ o s+ B

Setting o = B = ¢, say, and using equation (7) and (8), the Laplace transform of state
probabilities reduce to the following expressions :

= 1 = B (s)
9 B = — Pol) =2
) °® =¥ 0= Fo
_ _ B
Py =—2— B tEO
(s + w)K(s) (s + NK()
_ _ AB
P.(s) = A Pr(s) = —————(f) Ho )
K(s) K(s)
10 B Pl BOIHE

K (5)
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where

(1) _IZ(s) =@+ D) =-rpyB@E/(G+r - Hy A (s) = AB(s) ¢/ (s + ¢)

- gh (1 + B®] /(s + ¢).

For obtaining P,,(s) we use the following additional notations :

Ml=2u2+11;M=r+M1;N=Ilr+2u2(11+r); T) = 2w, 15
T=Tyr;Y=1 +w T7=11+r;T8=wk; Ty = Tgry
G=w11+T8;J1=Y+M;J2=G+MY+N;J3=MG+NY+T;
Jy = NG + IT; T, = Wy phs T3 = gqhs Tg = L1 1 Ny = Tg + wl;

From equation (9) and (11), one can obtain

(12) R(s) = Py(s) + P(s)

{1 + B]
E(s)

56 + Clss + 0234 % 63s3 ke 0432 + 0432 e Css + Cé

s’ + d1s6 + d255 + d3s4 + d4s3 + d5S2 + dgs + dy

where

(13) Cl=Jl+¢;C2=J2+J1¢;C3=J3+J2¢

ey
[

—N1+M11+¢
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—N2+M1N1+T5+1(N1+Ml)—T2+¢(N1+M1+1—T3)

A
|

+ ¢(N2 +M1Nl + TS +N11+ MII_ T2 = T3M1 - T3N1)

&
t

= NyMy + Ny Ts + I(N3 + M{N, + N, TS) -1 (T + Y + G+ an
Ty O Ny MNy + N T+ I(Ny + MUy + T5)
- Tz(T7 + ¥+ T4) ~ TyTy - T3N, - ;M Ny = T3 T}
ds = NyTs + I[Ny My + Ny Ts) - 1, (¥Tg + 7,6 + Yrug ) = Ty My
+ O{NyMy + NyTs + I( Ny + MlN2 + N T5)
STy(Te+ Y + G+ I+ T, + Tr) =Ty = TyTyM (1 + 1)
TNy - Ty My Ny = T3 TNy |
dg = Ny Tl = TG (w7 + Tg) = Ty Ts + WM Ts + 1[Ny 0ty + Ny Ts)
. T2(YT6 +T,G+ Y+ TG+ T4Yr)
~TyMy - Ty Ty Ts - Ty My Ny = Ty Ts Ny |

dy = o{T5( Ny + Ty + TyTyr ) - 1,G(Ts + Tyr + 1) - Ty Ts Ny |

Now substituting ¢ = 1 in equations (12) and (13), one gets the following expression
for Pup(s)
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(14 P © S+ 8+ + 58 + 0,58 + s+
S) =
up — — - e - - =
sT+dis® + dysd + dyst 4 dys® 4 dgs + dgs + d;
F
_E®
G
i where the coefficients ¢, to ¢, and d, to d, are obtained by putting ¢ = 1, in equation

(13). To obtain the operational availability Pup(t) of the system we shall have to take the
inverse Laplace transform of Pup(s).

Steady State Behaviour of the System

Using corollary to Abel’s lemma, one gets

Pup = lim s Pup (s)
s—>0

= lim s[ Py@) + P,(5) |

r->0

_ limsll + B(s)]

s—>0 K(s)
_ [I + B(s)]
K (0)
where
=, d .
K'©) = [; {K(s)}]
s=0
Hy B(0)
=1 -p B O+ — —— — A (0) - B{(O)(A + ch)
{A +gr)B(O0) + q);}
+
¢
where A°(0)and B’(0) are obtained by differentiating A(s) and B(s) respectively at s = 0
P =1-P
down up’

~ Time and Variance of the Time to Failure

To obtain the expression for MTTF and variance to the time to system failure we
put ¢ = 0, in equations (12) and (13). Therefore
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sS4+ c?sS + css4 + c;s3 + c"‘s2 + cgs + cg
R(s) =

s+ d* S+ d* S+ d’sS v d' S v d s v di s+ d?

where ¢} to cg and d | to d ] are obtained by putting ¢ = 0, in equation (13).

*

. s Y
(15) MTTF = lim R(s) = —
50 6 -
o = - 21im RO _ wrrry _
s—>0 ds &

(VL] LR )
_ 265d5 _2C4d6 -C5

16
(16) E

Numerical Computations

Letting A =017, A, = 0.13, w=0:1, u; =0.21, 4, =02, r =03, p = ¢ = 0.5. We
get the following expression for P,,(1)

17) P"p () =0.8642758 - 1.238981+ 10° 4 exp (~0.2716 1) - 0.4885545 exp ( -~ 0.0457 ¢)

+ exp (= 1.1713 1) [0.3786046 cos (0.5006 1) + 0.1176984 sin (0.5006 7)
+ exp (= 0.2300 1) {0.246913 cos (0.4315 1) + 0.27552403 sin (0.4315 9]

Table 1 lists values for the availability of the system for different values of time
parameter ranging from ¢ = 0 to ¢ = 7 with step size 0.2. Availability vs time graph has
been given in Fig. 2. It can be observed that the availability deceases with increase in
time. The decrease is sharp initially and with further increase in time it stabilizes.

Availability vs Time

0.9 ‘ ~@40— AVAILABILITY
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Table 1
Availability vs Time

Time Availability Time availability
0 : 1 3.6 0.5718948
0.2 0.9439275 38 0.5605106
0.4 0.8953375 4.0 0.5496079
0.6 0.8535214 42 0.5392288
0.8 0.8176178 44 0.5294183
1.0 0.7867262 4.6 0.5202207
1.2 0.7599801 438 05116778
1.4 0.7365892 5.0 0.5038265
1.6 0.7158630 5.2 0.4966980
1.8 0.6972176 54 0.4903169
20 0.6801756 5.6 0.4847009
2:2 0.6643587 58 0.4798604
24 0.6494776 6.0 0.4757988
26 0.6353200 6.2 0.4725126
28 0.6217391 6.4 0.4699919
30 0.6086413 6.6 0.4682206
32 . 0.5959758 6.8 0.4671772
34 0.5837246 7.0 0.4668356
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