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Abstract : In this paper the problem of selecting the largest mean of two normal
distributions is considered when variances of two distributions are unequal and unknown.
Various multi-stage procedures are proposed and the second-order approximations are
obtained. i

1. Introduction

In every day life, one selects or decides on the best product, best treatment, best
candidate for a position or the best route for a destination etc. among many other
decisions. Such type of problems give rise to a new dimension of ‘ranking and selection
procedures’. The fundamental and pioneering work, done in fifties in this area is due to
Bahadurl, Bahadur and Robbinsz, Bechhofer3. For a brief review on ‘ranking and
selection’ problems and inferential procedures to deal with them, one may refer to
Bachhofer, Dunnett and Sobel, Gibbons, Olkin and Sobels, Gupta and Huang6,
Dudewicz and Koo', Laan and Verdooren® and Mukhopadhyay‘).

Bechhofer? considered the problem of selecting the largest mean of k(= 2)normal
populations having common and known variance and provided the fixed sample size
solution. Robbins, Sobel and Starr!® established the failure of the fixed sample size
solution to the problem when the common variance is unknown. They proposed a
sequential procedure to handle the problem and studied its first-order asymptotic
properties. For the case of two populations, Mukhopadha\yay11 proposed ‘improved’
two-stage and purely sequential procedures. For the sequential procedures, he derived
second-order asymptotics. For the sequential procedure of Robbins, Sobel and Starr'?,
Mukhopadhyay and Judge12 obtained the second-order approximations. Dudewicz and
Dalal!? and Rinott' proposed two-stage procedures for selecting the largest mean of two
normal populations assuming the variances to be unequal and unknown. Under the same
set-up, Mukhopadhyay9 proposed purely sequential procedure and obtained first-order
asymptotics.

In the present paper, the problem of selecting the largest mean of two normal
populations is revisited. The population variances are assumed to be ubequal and
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unknown. Failure of the fixed sample size procedure to deal with the problem is
established and various multi-stage procedures are developed to deal with the situation.
Improving the already obtained results, the second-order approximations are derived.

In Section 2, we give the set-up of the problem and prove failure of the fixed
- sample size procedure to deal with it. In Section 3, we propose a purely sequential
procedure and applying the theory of Woodroofe!>, obtain the second-order
approximations. In Section 4, following Halll%, a three-stage procedure is proposed and
the associated second-order asymptotics are derived. In Section 35, as in Hallm, an
‘accelerated’ sequential procedure is developed and second-order approximations are
obtained. Finally, in Section 6, motivated by the work of Kumar and Chaturvedi!” and
Chaturvedi and Rani!®, a two-stage procedure is adopted and the second-order
approximations are obtained.

2. The Set-up of the Problem and the Failure of the
Fixed Sample Size Procedure

Let {XI-J t.J = 1,2,... be a sequence of independent and identically distributed
(iid) randon variables (rv’s) from the i normal population I1, (/ = 1,2,) with mean
W, € (=, ») and variance 6,3 € (0, o) i.e., II; has the probability density function
(pdf) ’
(x; - Hy ,'})2

20,2

1
2.0 FACTRET Giz) = SR P ;-0 <X < o,

i

All the four parameters ; and 6,2

select the population corresponding to, Hp2) ,where Hpip S uppare the ordered means. Let
5 € (0,0), Pre (1/2, 1), 8 = (1, My 07, 63 and

Q@) = {8: (Hpy—1m 2 O}

The configuration Hpp = Hpgp + 8 is known as the least favourable configuration
(LFC). Denoting by ‘CS’ the ‘correct selection’, we have to select the better population
such that P(CS) > P* for§ e C(8). It has been shown by Mukhopadhyay11 that under
the LFC, to achieve P (CS) > P*, the sample size required from I1, is the smallest
positive integer i, > n, where

2.2) n' = QoY i=1,2

Here the constant ‘@’ is determined from the equation ® (a) = P*, where @ (.)
denotes the cumulative distribution function of a standard normal variate. Since o7 's
have been assumed to be unknown, it follows from (2.2) that the fixed sample size -
procedure fails to meet the goal for all 0,2 ’s,

In what follows, we propose and study various multi-stage procedures. Throughout
the remaining part of this paper, we denote by

are assumed to be unknown. Our problem is to ..
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"
i

2 oy . a2
Si(niy = (n; - 9] Z (ij - Xi(nl))
j=1
and

_ by
Xi(ni)—ni z Xij'
j=1

3. The Purely Sequential Procedure

Let us start with a sample of size m (2 2) from each II; i = 1,2. Then the
stopping time N, = N, (8) is defined by

3.1 N; = inf {ni 2 min; 2 (2a2/52)512(n,)}

When we stop, we compare X 1V and )_(Z(NZ) and choose II; (IT,) as the better
population if X, 1w, > (<) Ky -

It has been shown by Mukhopadhyay11 that under the LFC, for the sequential
procedure (3.1),

R
3.2) P(CS):ECDSﬁJrE% )
(3. N, N,

Mukhopadhyay]1 studied the asymptotic properties of the sequential procedure
(3.2) and proved that

(i) hm E(N,-/nf) =1 and (i) lim P(CS) = P
3—>0 50

Thus, only first-order asymptotics for the expected sample size and probability of
correct selection associated with the sequential procedure were achieved.

The following theorem provides the second-order approximations for the sequential
procedure (3.1). :

Theorem 1 : For the rule 3.) and all m 2 4, as & — 0,
(3.3) E(N) = n; — 1.59 + o(1)
and

*

(3.4) P(CS) = P* + a(- 71 + .0884a) [l + L)qv(a) + 0(8%),
1y ny

where ¢ ( . ) denotes the pdf of a standard normal variate.
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Proof : It is easy to see that

(3.5) limN; = o
) 3->0

Le., letting & - 0 is equivalent to studying the asymptotic properties of the sequential
procedure (3.1). From (3.1), we notice the inequality

22 2] ,
§2 |5 < N, < 52 |5V + (m - 1)

or
5? 2 N./n} Lo 1.2 *
iWYor | <\ M) < |Sivy /et + (m - 1)/t
which on using (3.5), the fact that s%(/\,) —a-E—> 012 as Nl. — o lim ”? = o, gives that
' 3> o0
1 < lim (N/n)) < lim sup (N/n)) < 1,
50— 0 50
or
(3.6) lim (V/n)) =1 a.s.
5—-0
Using the result that
nl—l
(3.7) (n; — 1)s,2(ni)/o,2 =¥ Z,
j=1

where Zj is a standard normal variate, we can write the stopping rule (3.1) as

[ n -1
i

(3.8) N =infin,2m: Y ij < (n; - l)(n,-/n;‘)}.
f= 1

i

Let us define another stopping rule N;" as

{

3.9 N*=inf{ni2m—ll Zij < n,z(1+ni_l)/n;’}.
j=1

Comparing ( 3.9) with equation (1.1) of Woodroofe!S, we obtain in his notations

c=@), a=2 B=1 pu=1 =2 Lm=1+n!, L=1

*

and A = n; . Moreover, for generic B ( > 0 ), denoting by F(x), the cumulative
distribution function (cdf) of ij , we have
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X 1
=1
Fix) = Bje~}’/2 )’2 dy < Bx]/2,
0

so that, a = 1/2. Table 2.1 of Woodroofe15 gives that v = 41. Theorem 2.4 of
Woodroofe!® now gives that, for all m > 4, as 35— 0,

EWNY) = nj =259 + o(1).

Since N7 = N, — 1, we get (3.3).

We can write (3.2) as

Ny N
(3.10) PCS) = E| Y| =
n] n2
where
- 172
(31) W, = 0@ (e ) )

Expanding ¥(x, y) around ‘x = 1, y = 1’ by Taylor’s series for two variables, we
obtain for |u 1| < {x -1 and v 1] < ly —=11.

M(x,y)
coonfre] ]
-V:]J’=1} v x=1, y=1
(u,v)}

(3.12) W(x,y) =¥ (L 1){(;‘— 1>{§£§§jﬂ

Ox O

2
ox

+ (1/2)[(,\-_ i {mﬁ

} +2x- D~ 1){—&””
(v, v)

[ D77 |
+0v—1)zr\y(§") }
oy @)
We note that
(3.13) Y, ) = ©@=P*
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-1. oy
oo 2 () Bty (D]
e o) )
I S I & LD
j

1)A
x(x +y1 3/2¢(a\5<x"1+y_l);1/2>

and

Py (x.) a -1
3.18 2 34242 (x 4y 1)
( )] By 2\/,2_)(2})2 [ +2a (x +y >

-5/ -12
x(x_l+y—l> ¢)<a\/2_(x71+y“l) )
It is easy to check from (3.6) that, as § — 0,

(3.19) 021, Feats

It follows from Theorem 2.1 of Woodroofe!® that
. D12
(Vo= m)/(m) " > v 2)

and his Theorem 2.3 gives that (Nl. - nf)_/(nj) is uniformly integrable for all m > 4.

Utilizing (3.3), (3.12) - (3.19) and the independence of N and N, , it follows from
(3.10) that, for all m >4, as § - 0,

N N, q
(3.20) P(CS)y = P* + E { [ - ]( )d)(a) [ N j@ ¢(a)}
4l n



Largest Mean of Two Normal Distributions 45

Ny N, a
3 {7] - 1] [n—z ~ 1} [76)(3 + azﬁ)¢(a)

. @q,(a) H{_ 159 + o(1)} + ni{— 159 + o(1) | }

2
a 2 & 2 a* 2
1l = o] Ihadii =) o
+[8]¢(a) nT{ 1.~5+23/2}+n§{ l.25+23/2}}+0(6)
= P +a(— 0.71 +0.0884a2> L 0@ + 0(3).
o

Thus, we have (3.4).

4. The Three-Stage Procedure

Letn; € (0, 1) be specified. We start with the sample of size m ( =2 ) from each
of T1, i = 1, 2, where m is chosen in such a manner that m = 0(62) as & —» 0 and

lim sup (m/n}) < 1. Then we collected M; — m more observations from IT, , where
&> 0

+
2na2s2
4.1 M, = max{m, —62'@ + l}.

Here,[y]™ denotes the largest positive integer <y. Finally, at the third stage, we take
N, — M, observations from IT; , where

ZCIZS%(MI) *
“4.2) N, = maxj M, %) + 17,

We choose I1, (I1,) as the better population if_l(N) > (<) )—(2(N)
1 2
Before proving the main theorem, we establish some lemmas.

Lemma 1 : For the three-stage procedure (4.1) — (4.2) as § — 0.

4.3) EN) = n} - [ﬂij + G) +o(1)

!
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and

(4.4) ENZy =n?+ (1 =30 Hn - G+ /2) + o(8?) .

Proof : By the definition,
E(N)y=1+11,

where, denoting by I (. ), the indicator function,

2 +
I= E{N,J{{M[ < m}U{N,- s{ﬂ?@} + 1}”

and
202S’2(M) *
II = E| N;I 62' +1>M,
It follows from Halll® that, 8 — 0,
4.5) 1=o(l).
Now, denoting by 2 ) +
TD | 2azsi(1\/[l) 2a si(M,)
M, - 62 ) 62

we can write

I = (—25%2]5(_;%(%)) % E{TM)

It follows from Hall!® that, as 8 — 0, TM is uniform over (0, 1). Thus, as 8 Y 0,

(4.6) 1= [%;—] E (s?‘(M’_)) % @

We now evaluate the value of E ( sz(M) ). To this end, using (3.7), we write

j=m

M -1
) L2l v o2
E(Si(M,-))—G"E[(Mi— & ZJ}

- o8] {( - m) + on - 0]
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m=1 '""12
x zz}u: XZ /Ly, s 2y
j=m
m—1
4.7) —d+?E[M1 E 2]+ o(mit).

j=1
Expanding Ml.”l around 1, n:‘ by Taylor’s series and denoting by R:‘n , the remainder
term, we obtain ‘

Mi_l = (ni”?)_l - ( in;)_z(AJi - ni”?) + an-
(4.8) - ( ,n;‘)_l - (ninf)_z{( n’_'l) (mzlzzj - (ﬂ,-nfﬂ + Ry

Substituting (4.8) in (4.7), we get

(Tli";)—-l m-1 2
E(SIZ(MI))— f + o E[ (rlx 1) ( 12]_‘(;"?1—)—[;2]2}

. 9 m-1 -1 ,
o a3 ]

It follows from Cauchy-Schwartz inequality that '

m-1 m-1
Cov? [ s zl z}j < Var (T,,) Var ( zl ijj
= S

(m-1)
2

0 (5)* by the choice of m,

(4.10)

11

m-1
implying that 7,, and )" ij are asymptotically uncorrelated. Utilizing this result, we

J=1
obtain from (4.9) that as & — 0,

2

o))

@.11) E(sjag)) = +0(8%).

Making substitution from (4.11) in (4.6), we get

3001
(4.12) I = n;'—K+5+o(l).

1
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Result (4.3) now follows on combining (4.5) and ( 4.12).

Furthermore, we have

2
2 o2
5 2a°s i(‘\'ll)
EW)) = E |~ 2 " Ty

44" 4d*
(4.13) - (?]E{s;‘(m} + (?}E{S%W) TM,} + E{ T%V[,}

1 M- 2
2 _ 4 S S 2
E{si(M,)} = O-l' E\ (Ml — l) z Zi }

j=1

5 2 m-1 1 M,-1 -1
o;‘E\:(M,.—m)" 3 (21) (Z z}] E{( D z}] Az, .. ,Zm_l}}LO(M?z)

M -1 e | 2
G?E{l + 2M;‘[z'z}j + M2 [ Y z}j } + oMY,
j=1

3 =1

which on using (4.8) and Taylor’s series expansion of M~ 2 gives that

2
3 j PN *y— " £
E| s?(M,.>}=o§*E[1 Gy i = 20D 3(M,-—n,-n,->}{/§ Z}} }0(62)

3 5 2
4.14) =ofll - — - — |+0(%).
{ m;n;) (Tl,-ni)z} °

Substituting from (4.11) and (4.14) in (4.13), we get

3n]
E(N%):n;*——l——%+n}‘—i+l+o(62),
T n; o 2
and (4.4) holds.

Lemma 2 : For 0 <& <1 and some positive integer ¥, as 85— 0.
P < en) ) = 00).

Proof : It follows from the definition of N; that
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. 2(125'12“,,’) .
P<Ni < 8”1‘) L Pl 52"“ < en

b [\S:Z(M,) - o] 2 el (1 - 8)}

<P max {""12("1/,) - G%l 2 (52(1 - 8)1

i
- 2
4«12
m<M<ie H’J

=0 m! ),
by Hajeck- Rényi inequality and the result follows.

Now we prove the main result of this section, which provides second-order
approximations for the probability of correct selection® associated with three-stage
procedure.

Theorem 2 : 4s & — 0,

_pr o, [a 2. 3) (.39
P(CS) = P* + [32%(”{”’; {\/2 a'(l + mj ’\1 + mj}
+%\/§a21+i~(l+§2‘f Fo(8%).
) Lip) L N2)

Proof : It is easy to check that the coverage probability corresponding to three-
stage procedure is same as that given at (3.2). Using the expansion (3.12) an applying
Lemma | , we get as 8 — 0,

< D

o pr, (@ ML (M alf_s, @), (M (N f
PCS)=P +(4j¢(a)EH”7 1}{}75 ]JHSM 4+23/,2j(b(u)EH”T . 1} wi_l”

(Dol L] 3,1 LIS R S SN
=P +(4j¢(a){n*{ m +2 +0(1)}+ *j + 57 o(l)}

I [ N2 ]
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sl e 2 ot 2]+ oy
5 m Ny

and the result follows.

5. An ‘Accelerated’ Sequential Procedure

Take m (=2 ) to be the initial sample size from each of the two populations, where
m is chosen so as to satisfy m = 0(62) as & > 0 and 5li_r)n0 sup (m/n;k) < 1. Let
M, € (0,1) be specified. Start sampling sequentially from the i population with
stopping time M, defined by

2
3‘11‘ @] (M)
62

Based on these M, observations, we compute 312 A - Then we jump ahead and collect
Ni - M, more observations from the ith population, ‘where

!

5.H M = inf{nizm:niz

{

24 S%(M)
(5.2) N, = max\ M, —t

1 62

We select 11, (I,) as the better population if )_(I(N) >(<) )—(Z(M) . The
probability of correct selection is same as that given at (3.2) with N; determined by the
present rule.

We first prove a Lemma.

Lemma 3 : Forallm =2 4, as d — 0,

(5.3) EN) = nf + (172 = 2071 + o(1)
and
(5.4) Var(N) = 217 il + o379

Proof : Denoting by

(55) U\,/ =1 -

we can write

EN) =1+ 1,
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where
‘»2 @ s,z(M)
(5.6) I =E| N, MI->{T + 1
and
2 02 5

It follows from Hall'® that, as & — 0, I=0(1) and U, is uniform over (0, 1 ).

Thus, we conclude from (5.5) (5.6) and (5.7) that, as § — 0,
8 P ELa PYERR
(5.8) W) =73 (s,@\/,j)) +5+o(l).

Now, we evaluate E ( SIZ(M) ). To this end, we write the stopping rule (5.1) as

(5.9) M, = inf

i

j=1

1 -1
tnl- >m: Y ij <mn) - Dn; ]
Define another stopping rule M, , as

(5100 M = inf[n, 2m-1 Y Z<mn) b -n+nh }

Jj=1

Comparing (5.10) with equation (1.1) of Woodroofe!®, we obtain in his notations,

c=mr) L a=2 B=1 p=1P=2 Lw=1+n"' L[y=1,

A=mn,n, a=1/2, and v = 041.

i

15

It now follows from Theorem 2.4 of Woodroofe™ that forall m>4,asd — 0,

EM}) = n,n' = 2.59 + o(1).

SinceM;F =M — 1,wegetforallm=>4,as8 - 0,

(5.11) E(M) = n;nf = 159 + o(1).
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Let us consider the difference
2 2
2M; 4 sy

2

(5.12) Dy =M - —3

i

It follows from Woodroofe!® that the mean of the asymptotic distribution of Dg is
0.41. Thus, we obtain from (5.11) and (5.12) that, forallm=>4,asd — 0,

24* B
[‘6%]15(5}2(/\,’)) = 1 1[5 (M) - 0.41]
(5.13) = }1?{—211,_1 +0(1)}

Substituting from (5.13) in (5.8). we get

EWN) = ni + (% -2n; q + o)
< J
and (5.3) holds.

Let .
(‘Mi - nh)

h (N[,‘) = . n’f‘)l/z
i

L
Then it follows that h(M) — N(0, 2) as 8 —» 0. Moreover, from Theorem 2.3 of
Woodroofe!s, h%M) is uniformly integrable for all m = 4. Hence, forallm=>4,as 8 — 0,

ERM)] = 2 + o(l).
By the definition

var (N) = n; * Var (M)

=22 (20 |
and (5.4) holds.

The following theorem provides the main result of this section.

Theorem 3 : For all m>4,as & — 0,

lw$:ﬁ+ﬁjle_li+@£ﬁ

4 *
1y
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2,2
1 (1 18 @3’&] d(a) + o(8?).

nZ 2 4n, N2

Proof : Applying Lemma 3 to the expansion (3.12), we get for all m >4, as & - 0,

* a /vl W ‘N._ \
PCS)y = P+ |F|0@E| |— -1+ |—= -1
: i)

+
N
oI RN
7 T

I
o

+
Wl

N AR
19|
e

=2

o~

Q

N

&S]

R g
5 =
e |

{

[E¥)

+
¥ |
3w 5

|

ta
—

x {~LJVar(A"])+ (E(V)) - ;72*)2} + %;War(!\’;) +(E(N,) = 1)’ ;J
? =1 - - -

* 2
7 7t ’ Hy

N < RAERY
. p* a L (l) o ] _l“ (lﬂ ”l\ yi\lﬁ,“qr a )
= +(4]¢(a){”? Lz-m + ban K IR e z/jq)(lz) -

i

A 1 ER %_ *
My ny) M> #7)

113 035357
2

- - +
4n;y m J

-

(1 13 035354
+ = e e —

1 )
— - a) + o(d°) |.
i T ] #a) + o J

and the result follows.
6. The Two-Stage Procedure

Start with a sample of size m > 2 from each of the two populations, where, as in
Kumar and Chaturvedi'” and Chaturvedi and Ranils, m is chosen in such a manner that
m = 0(62) as 6 — 0 and lim sup (m/n;*) < 1. Based, on these m observations . we

5—>0 ; ; ;
compute slz(m) . Then, the second stage sample size being given by
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2h 52
_ (m — 1) 2i(m)
6.1) N; = max‘m[ 52 + 1 },
where
(6.2) P{f%m - B —'1)} = P

and fm - 1) follows Student’s f-distribution with ( m — 1 ) degrees of freedom. We
selectl]; (IT,) as the better population if Ny > (<) Xz(Nz)' The probability of correct
selection for the two stage procedure (6.1) - (6.2) is the same as that given at (3.2).

The main results are proved in the following theorem.

Theorem 4 : As 6 — 0,

(6.3) E(Ni) - n;k " % + o))
and
64) P(CS) = P*.
Proof : Denoting by
2 R

T o— ] — 2 h(m -1 Si(m) _ 2 h(m - Si(m)

m 62 82
we can write

2hg, ~

(6.5) E(N,') = [—(’ETJJE(S%(nz)) + E(Tm)

It follows from Hall'® that T,, is uniform over (0, 1) as m — oo. Utilizing the

unbiasedness of s,z(m) for 012 and the fact that

a.$S.
h(m_ By @ asm—> o,

we obtain from (6.5) that, as 6 — 0,

EN) =nj + % + o(1)

and (6.3) holds.
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Utilizing (6.1), we obtain from (3.2) that

w62 ns &2 ek
PCS) > E| @] a\2 ‘ 4 .

2 2
2/7(171 - l)Sl(m) 2h(m - 52 (m)

[\

¢ 2
211(”1 - 1) X - 1)
O]
(m~-1

= P[’%m -1 < h(m - 1):‘

B,

i

and (6.4) follows.

1L

12.
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