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Abstract : We study relative projectivity and injectivity classes of exact sequences with
respect to the classes of cyclic and cocyclic modules respectively. A characterization of
cyclic pure exact sequences has been given in terms of exactness of a certain sequence of
submodules of the modules appearing in the given sequence. The second half dualizes
certain resuits of warfield' and shows that for certain classes S of modules, every module
A can be S-copurely embedded in a direct product of members of 4, and from this we
obtain other results about S-copure injectives and cocyclic copurity.

1. Introduction

Module-purity plays an important role in the study of R- module categories. The
aim of the present paper is to study some aspects of purity relative to a fixed cyclic
module R// for a left ideal /. In the first section of this paper we give a proof of the
proposition (2.2) which was stated in® without any proof on which our theorem 2.1
depends. In the second section of the paper we dualize certain results of R. B. Warfield!,
which generalizes some results in purity in abellian groups L. Fuchs®. In this paper R
refers to a ring with identity, which need not be necessarily commutative. Also by an
R-module we always mean a left R-module.

2. Cyclic Purity

Definition 2.1 : An exact sequence
M
5 7
s
1|
(8% L/ r'3
0 —s A —B—C —0

is said to be M-pure if givenf: M —> C, 3/ : M — B such that Bof = 1.

We shall start with the purity relative to fixed cyclic module R/ for a
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left ideal I that is the condition that R/I be projective relative to the sequence
0 >A—>B- C — 0. .

The following proposition is stated in D. P. Choudhury2 without any proof. Since
theorem (2.4) uses proposition (2.2), we give a proof of the proposition which does not
seem to have appeared anywhere.

Proposition 2.2 : For a left ideal I @ submodule K of M is R/I-pure if and only if
given m € M such that Im < K, 3 m' € M such that Im' =0 and (m — m') € K, where R/
is a fixed cyclic-left module.

Proof : Given the lower sequence and f: R/ - M/K we construct the following
diagram by projectivity of R

0 —s I —%» R 25 R/II —0
[ B
0 —s K -5 M 25 M/K — 0
. (i)

Letf(T) = m + K(T € R/I). Since
fF(TYy=fQ +D, I(m+ K =If(T)y=1¢Q + D) = {rfA + Dir e I}

= {f(1 + D|r e B = {f(O)} = {0}
therefore /
Imc K= 3m e M with Im' = 0 and (m — m') € K.

We define h(7) =rm’
Claim : It is well defined. If

7='§::>r—seI:(r—s)m’=0:>rm'=sm’:>h@:h@
Now

@ o) (@) = B (rm) =rp (m)=rim+ K)y=rm+ K =rfD

=70 =f) V7 e R/

therefore the sequence is R / [-pure.
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Conversely given that the lower sequence is R//-pure, given m € M such that Im ¢
K, we define f : R/ - M/Kbyf(r) = rm + K. This will be well defined as Im C K.
The map h : R/ — M exists such that p'ok = f Taking m' = h@, m =m + K
=m+ K = + K)y=f(Q) - P oh() =0asp oh=fie (m-m)e K.Also
Im' = ()= h{) = h(0) = 0.

Definition 2.3 : Let M be a left R-module. For a two sided ideal / we define
Ml ={me Ms.t Im=0}.

The following theorem is analogue of the corresponding results on purity in abellian
groups, Theorem 29.13

Theorem 2.4 : Suppose K is R/I-pure in M, where R/l is a fixed cyclic left module.
Then the following conditions are equivalent :

o p
@0 > K > M —> M/K — 0 is an R/I-pure exact sequence.

a B
) 0> K[ > M[I] > M/K)[I] > 0 is exact, where o and B’ are
restrictions of o and {3 respectively.
*

a B . *
(©)0 = K/K[[] » M/M[I] » (M/K)/(M/K) [1] —> 0 is exact, where o and
[3’k are maps induced by o and B respectiveiy.

Proof : (a) = (b).

‘ To show (b) is exact, that is to show that Image (a"y = Ker (B"), let m e Image (&),
therefore m = o' (k), for some k € K[/], I(a (k) = a(lk) = a. 0 = 0 (since Ik = 0)
therefore ou(k) € M{/] therefore

(1) Image () < Image (o) N M1l = Ker () n M[I} = Ker (8")
Ker(B) = {m e M} | B'(m) = 0} = {m € M| B(m) = 0 and Im = 0}

= Ker (B) n M[I] = Image () m M[I] (since Ker (B) = Image (o)}

Take a(k) € M[I] ~ image (c), therefore, lo(k) = 0 = a(lk) = 0 therefore 7k = 0 (since
a is injective). Therefore £ € K [I] and o (k) € Image (a') = M [I] N Image (a) =
ker(B') c Image (a') (2). From these equations we get Ker(B') = Image (a."). Now to show
that B’ is epic, that is to show that for each element (m + K) € (M/K)[I]) (ie.l
(m + K) = 0), there exists an element m' € M[/] such that §'(m) = m" + K
=m+ K. Since I(m+K)=0=1Im+ K=0= Imc K, therefore from the
proposition [2.2], 3 m' € M such that /m'" = 0 and (m — m') € K. Therefore
B'm)=m + K =m+ K(since m —m') e K)yand Im’' =0 = m' € M[]]
therefore B’ is epic.

() = (a).

Suppose (b) is exact. Then we have to show that (a) is R//-pure, that is for given
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m e M with Im € K, 3 m' € M,such that /m' = 0 and (m — m"y € K. Since Im c K =
I(m + K) = 0 therefore m + K e (M/K) [I], B’ is epic, therefore (m + K) = B'(m") (for some
m' € M[I]) = (m" + K). Therefore Im' = 0 and (m — m') € K.

p
Hence 0 » K f) M — M/K — 0 is R/I-pure.
(b) = (¢).

We consider

0 — K1 — MU -5 M/K[I — 0

Al H1 gt

Az #ZJ 72
[ ﬂ
0 — K/K[I] —— M/M[]] = K
0 0 0

The proof follows from 3 x 3 lemma.
3. Cocyclic Copurity

We have called an exact sequence A-copure for a class 4 of modules if objects of
A are injective with respect to the exact sequence, and we call a module A- copure
injective or A-copure projective if it is respectively injective or projective relative to
A-copure sequences. The following results dualize certain results of R. B. Warfield!, and
at the same time, they generalize certain results in purity in abellian groups (Lemma 30.3
and Theorem 30.4 in Fuchs® to module categories.

Definition 3.1 : An R-module M is said to be Cocyclic, if it is a submodule of E(S)
for some simple module S. These are nothing but the subdirectly irreducible modules.

Proposition 3.2 : Let S be a class of left R- modules containing the modules E(S;)
(where S; are a representative class of all simple modules) such that there is a subclass
S" which is a set with the property that for any M € S, there is an N € S' with
N = M, then for any module 4, there is an S-copure sequence 0 > 4 — C — C' — 0
such that.C is a direct product of copies of modules in S.
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Proof : Let A be the set of pairs (M, f) with M e s* and f € Hom(A, M) and for
each A € A denote the corresponding M and fby M, and f; . Let C = IL, _ , M, and
let f: 4 — C be the product map of the maps f, . Since p,0d = f;, then ¢ is injective
because 4 can be embedded into a direct product of E(S,)’s.

Theorem 3.3 : A Module P is S-copure injective if and only if it is a direct
summand of direct product of copies of modules in S.

Proof : Suppose P is an S-copure injective module then we have to show that it is
a direct summand of direct product of copies of modules in S. Consider the diagram

0— P 250 —s0/P—0

P (i)

From the proposition [3.2], there is an S-copure exact sequence (iii) with C
=11, . A M, where M, e S. If we take M = P, then the sequence (iii) splits by copure
injectivity of P, therefore P is a direct summand of direct product of copies of modules
of S.

Conversely, suppose L is a direct summand of direct product of modules of S, then
we have to show that L is an S-copure injective module. Let L be a direct summand of a
direct product N = I1N; where all N; are modules of S. Let 7; and p; denote the co-ordinate
projections and injections attached to this direct product and let ® : N — L and p : L
~> N be homomorphisms satisfying mop = /;.

If 0 — M, —*5 M, -2 My —

d
C (iv)
has S-copure exact row, then every module of S has the injective property relative to this
B .
exact sequence 0 — M1 il) M2 - M3 — 0. That is every R-module C e S, the
diagram (iv) can be embedded into a commutative diagram for a suitable choice y : M,

—> C/ There exists amap y; : M, — N, for every i, such that n.0po¢ = y 0a.
’ B

0 — M, —=5 M,
) \Q/7 2
dJl /’/ s
v/
L% £/
/
mlif
Tu
.N'L')]Vz

(v)

y M; » 0
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Let y" : M, — N be such that niow* =y,

Thus 7, 0(pod) = y, 00 = m;0(y* oa) for each i. That is po*d> = y*oa by
uniqu*eness‘ Hence ¢ = mo(podp) = mo(y*oa ), and take y = moy . Then yoa =
no(y o) = ¢.

Corollary 3.4 : Let S be the class of all cocyclic modules, then for any module 4
there is an S-copure sequence 0 > 4 = N —> N' — 0 such that N is the direct product of
copies of cocyclic modules in S.

Corollary 3.5 : 4 left R-module is cocyclic copure injective if and only if it is a
direct summand of a direct product of cocyclic modules.
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