Invariant Submanifolds of a Pseudo Normal Nearly Co-symplectic Manifold

Bhagwat Prasad

Department of Mathematics, M. M. T. D. College, Ballia (U.P.), India

(Received January 27, 1998)

Abstract: Tanno¹, Yano and Ishihara² proved that any invariant submanifold of a Sasakian manifold is Sasakian and minimal. Further Kon³ and Endo⁴ proved that an invariant submanifold of a K-contact manifold is K-contact and minimal. The author⁵ generalized this result to the case of a pseudo normal nearly co-symplectic manifold. Kon⁶ proved that the ϕ -sectional curvature K of an invariant submanifold M of a normal contact metric manifold M with Φ - sectional curvature K is less than or equal to K. The equality holds if and only if M is totally geodesic. The purpose of this paper is to prove similar results if M is a pseudo-normal nearly co-symplectic manifold in place of a normal contact metric manifold.

1. Preliminaries

Let \overline{M} be a (2n + 1) dimensional contact Riemannian manifold with structure tensors $(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$. Then they satisfy

(1.1)
$$\overline{\phi} \, \overline{\xi} = 0, \, \overline{\eta} \, (\overline{\xi}) = 0, \, \overline{\phi}^2 = -I + \overline{\eta} \otimes \overline{\xi},$$

(1.2)
$$\overline{g}(\overline{\phi}\overline{X}, \overline{\phi}\overline{Y}) = \overline{g}(\overline{X}, \overline{Y}) - \overline{\eta}(\overline{X}) \overline{\eta}(\overline{Y})$$

and

$$(1.3) \qquad \overline{g}(\overline{\phi}\overline{X}, \overline{Y}) = d \overline{\eta}(\overline{X}, \overline{Y}), \overline{\eta}(\overline{X}) = \overline{g}(\overline{\xi}, \overline{X})$$

for any vector fields \overline{X} and \overline{Y} on \overline{M} . On such a manifold we can always define a 2-form $\overline{\Phi}$ by $\overline{\Phi}(\overline{X}, \overline{Y}) = \overline{g}(\overline{\Phi}\overline{X}, \overline{Y})$. \overline{M} is called a pseudo normal nearly co-symplectic manifold if

$$(\overline{D}_{X} \overline{\phi}) \overline{\phi} \overline{Y} + (\overline{D}_{X} \overline{\phi}) \overline{Y} = \overline{\eta} (\overline{Y}) (\overline{D}_{\phi X} \overline{\xi}) - \overline{\eta} (\overline{X}) (\overline{D}_{\phi Y} \overline{\xi}).$$

In a pseudo normal nearly co-symplectic manifold, the following formulae are satisfied⁵

$$(1.5) \qquad \left(\overline{D}_X \overline{\eta}\right)(\overline{Y}) + \left(\overline{D}_{\phi X} \overline{\eta}\right)(\overline{\phi} \overline{Y}) = 0,$$

(1.6) (a)
$$\overline{D}_{\xi} \overline{\xi} = 0$$
, (b) $\overline{D}_{\xi} \overline{\eta} = 0$

where \overline{D} is the covariant differentiation with respect to g.

Let M be a (2m+1)-dimensional submanifold of \overline{M} . Applying $\overline{\phi}$ to a tangent vector field X to M, we obtain the vector field $\overline{\phi}X$ which can be represented as a sum of its tangential and normal parts i.e.,

$$\overline{\phi}\overline{X} = \phi X + \sum_{A} V_{A}(X) N_{A},$$

where N_A ($A=1, 2, \ldots, 2(n-m)$) are locally mutually orthogonal unit normal vector fields to M, and ϕ and V_A define respectively a (1, 1)-type tensor and a 1-form on M^9 . Moreover, we can put $\overline{\xi} = \xi + \sum u_A N_A$, where ξ is a vector field on M and u_A is a function on M. Now we define 1-form by $\eta(X) = \overline{\eta}(X)$ for any vector field X on M.

Let us assume that D_X denotes the Riemannian connection on M determined by the induced metric g, the Gauss formula and Weingarten formula can be written as

$$\overline{D}_X Y = D_X Y + \sum_A h_A(X, Y) N_A,$$

$$\overline{D}_X N_A = - H_A X + \sum_B L_{BA} (X) N_B,$$

and Gauss equation is given by

$$(1.8) \overline{g}(\overline{R}(X, Y)Z, W) = g(R(X, Y)Z, W)$$

$$-\sum_{B} g\left(H_{B}Y, Z\right) g\left(H_{B}X, W\right) + \sum_{B} g\left(H_{B}X, Z\right) g\left(H_{B}Y, W\right).$$

for any vector field X, Y, Z and W on M, where \overline{R} is the Riemannian curvature tensor of \overline{M} , R is the Riemannian curvature tensor of M, L_{BA} are the third fundamental forms and h_A and H_A are the second fundamental forms. h_A and H_A satisfy

$$h_A(X, Y) = g(H_AX, Y) = g(X, H_AY) = h_A(X, Y),$$

M is said to be invariant if $\overline{\phi} X$ is tangent to M and $\overline{\xi}$ is always tangent to M.

If there exists a unit vector \overline{X} in $T_X(\overline{M})$ (where $T_X(\overline{M})$ denotes tangent space at the point x on \overline{M}) orthogonal to $\overline{\xi}$ such that $\{\overline{X}, \overline{\phi}\overline{X}\}$ is an orthonormal basis of the plane section, then the sectional curvature

$$\overline{K}(\overline{X}, \overline{\Phi}\overline{X}) = g(\overline{R}(\overline{X}, \overline{\Phi}\overline{X}) \overline{\Phi}\overline{X}, \overline{X})$$

is called a $\overline{\phi}$ -sectional curvature. In the same way $K(X, \phi X)$ is defined at a point on M.

2. Invariant Submanifolds of a Pseudo Normal Nearly Co-symplectic Manifold

Lemma 2.1: For an invariant submanifold M of a pseudo normal nearly co-symplectic manifold \overline{M} , we have

$$g(H_A \xi, \xi) = 0.$$

Proof: From (1.7), we have

$$\overline{D}_{\xi}\,\xi\,=\,D_{\xi}\,\xi\,+\,\sum_{A}\,h_{A}\left(\xi,\,\,\xi\right)N_{A}\,.$$

By taking the normal parts, we get the result.

Lemma 2.2: For an invariant submanifold M of a pseudo normal nearly co-symplectic manifold \overline{M} , we get

(2.1)
$$g\left(H_A \phi X, \phi X\right) + g\left(H_A X, X\right) = 0,$$

for a vector field X on M orthogonal to ξ .

Proof: By virtue of (1.7); we get

$$\begin{split} \overline{D}_X(\phi Y) &= D_X(\phi Y) + \sum_A h_A(X, \phi Y) N_A \\ &= \left(D_X \phi\right)(Y) + \phi \bigg(D_X Y\bigg) + \sum_A h_A(X, \phi Y) N_A \,. \end{split}$$

Moreover,

$$\begin{split} \overline{D}_X(\phi Y) &= \overline{D}_X(\overline{\phi} Y) = \left(\overline{D}_X \ \overline{\phi}\right) Y + \overline{\phi} \left(\overline{D}_X \ Y\right) \\ &= \left(\overline{D}_X \ \overline{\phi}\right) Y + \overline{\phi} \left(D_X Y + \sum_B h_B(X, \ Y) N_B\right). \\ &= \left(\overline{D}_X \ \overline{\phi}\right) Y + \overline{\phi} \left(D_X Y\right) + \sum_B h_B(X, \ Y) \overline{\phi} N_B. \end{split}$$

Thus, we have

(2.2)
$$\left(D_X \phi\right)(Y) + \sum_A g\left(H_A X, \phi Y\right) N_A$$

$$= \left(\overline{D}_X \overline{\phi}\right) Y + \sum_B g\left(H_B X, Y\right) \phi N_B.$$

Putting $Y = \phi Y$ and $X = \phi X$ in the above equation, we find

(2.3)
$$\left(D_{\phi X} \phi\right) \phi Y + \sum_{A} g \left(H_{A} \phi X, \phi^{2} Y\right) N_{A}$$

$$= \left(\overline{D}_{\phi X} \overline{\phi}\right) \phi Y + \sum_{B} g \left(H_{B} \phi X, \phi Y\right) \overline{\phi} N_{B}.$$

Combining (2.2) and (2.3), we get

$$(2.4) \qquad \left(D_{X} \phi\right) Y + \left(D_{\phi X} \phi\right) \phi Y + \sum_{A} \left(g\left(H_{A} X, \phi Y\right)\right) \\ + g\left(H_{A} \phi X, \phi^{2} Y\right)\right) N_{A} = \left(\overline{D}_{X} \overline{\phi}\right) Y + \left(\overline{D}_{\phi X} \overline{\phi}\right) \phi Y \\ + \sum_{B} \left(g\left(H_{B} X, Y\right) + g\left(H_{B} \phi X, \phi Y\right)\right) \overline{\phi}_{N_{B}}$$

In consequence of (1.4) and (2.4), we obtain

(2.5)
$$\eta(Y) \left(D_{\phi X} \xi \right) - \eta(X) \left(D_{\phi Y} \xi \right) + \sum_{A} \left(g \left(H_{A} X, \phi Y \right) \right. \\ + \left. g \left(H_{A} \phi X, \phi^{2} Y \right) \right) N_{A} = \overline{\eta}(Y) \left(\overline{D}_{\phi X} \overline{\xi} \right) - \overline{\eta}(X) \left(\overline{D}_{\phi Y} \overline{\xi} \right) \\ + \sum_{B} \left(g \left(H_{B} X, Y \right) + g \left(H_{B} \phi X, \phi Y \right) \right) \overline{\phi} N_{B}.$$
Setting $Y = Y$ in (2.5)

Setting Y = X in (2.5) and using the fact that a unit vector field X orthogonal to $\overline{\xi} = \xi$, we get

(2.6)
$$\sum_{A} \left(g \left(H_{A} X, \phi X \right) - g \left(H_{A} \phi X, X \right) \right) N_{A}$$

$$= \sum_{B} \left(g \left(H_{B} X, X \right) + g \left(H_{B} \phi X, \phi X \right) \right) \overline{\phi}_{N_{B}}.$$

Thus we have

$$g\!\!\left(\,H_{\!A}\,\varphi X,\;\varphi X\,\right)\,=\,-\,g\!\!\left(\,H_{\!A}\,X,\;X\,\right).$$

Hence we have the Lemma 2.2.

Theorem 2.1: Let M be an invariant submanifold of a pseudo-normal nearly co-symplectic manifold \overline{M} with $\overline{\phi}$ -sectional curvature \overline{K} . If M has ϕ -sectional curvature K, then $K \leq \overline{K}$. The equality holds if and only if M is totally geodesic.

Proof: Taking a unit vector field X orthogonal to $\overline{\xi} = \xi$ and using (1.8), we get

$$(2.7) \quad \overline{g}(\overline{R}(X, \phi X) \phi X, X) = g(R(X, \phi X) \phi X, X)$$

$$- \sum\limits_{B} g \bigg(H_{B} \ \phi X \ , \ \phi X \bigg) \ g \bigg(H_{B} \ X \ , \ X \bigg) \ + \sum\limits_{B} \ g \bigg(H_{B} \ X \ , \ \phi X \bigg) \ g \bigg(H_{B} \ \phi X \ , \ X \bigg) \ .$$

By the assumption, we have

(2.8)
$$\overline{K} = K - \sum_{B} g(H_{B} \phi X, \phi X) g(H_{B} X, X) + \sum_{B} g(H_{B} X, \phi X) g(H_{B} \phi X, X).$$

By virtue of (2.2), (2.8) yields

(2.9)
$$\overline{K} = K + \sum_{B} \left(g \left(H_B X, X \right) \right)^2 + \sum_{B} \left(g \left(H_B \phi X, X \right) \right)^2.$$

Hence, we get $K \leq \overline{K}$. Here if M is totally geodesic, we have $K = \overline{K}$. Conversely, if we have $K = \overline{K}$, we have $g(H_A X, X) = 0$ for a unit vector field X orthogonal of ξ . Therefore we get $g(H_A \varphi X, \varphi X) = 0$. Moreover, we have $g(H_A \xi, \xi) = 0$. However, any vector X is expressed by the linear combination of a φ -basis $(e_1, \ldots, e_m, \varphi e_1, \ldots, \varphi e_m, \xi)$ in $T_X(M)$. Therefore, if we use the polarization identity, we obtain $g(H_A X, Y) = 0$, that is, M is totally geodesic.

References

- S. Tanno: Isometric immersion of a Sasakian manifold in sphere, Kodai Math. Sem. Rep., 21 (1969) 448-453
- K. Yano and S. Ishihara: Invariant submanifolds of an almost contact manifold, Kodai, Math. Sem. Rep. 21 (1969) 350-364.

Bhagwat Prasad

- M. Kon: A Note on Invariant Submanifolds in a K- contact Riemannian manifold, Tensor N. S., 27 (1973)
- 4. H. Endo: Invariant submanifolds in a K-contact Riemannian manifold, Tensor N. S., 28 (1974) 154- 156.
- Bhagwat Prasad: On a pseudo-normal nearly co-symplectic manifold, Bull. Cal. Math. Soc., accepted for
- M. Kon: Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep., 25 (1973)
- 7. S. Sasaki: On differentiable manifolds with certain structure which are closely related to almost contact
- 8. R. S. Mishra: Almost contact metric manifold, Tensor Society of India, Lucknow, (1991).
- 9. M. Okumura : Submanifolds of a Kahlerian manifold and a Sasakian manifold, Michigan State University,
- 10. H. Endo: Invariant submanifolds in contact metric manifolds, Tensor N. S., 43 (1986) 83-87.