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Abstract : In this paper we have dualized a result of Singh er. al! We also generalize
one result of same author to get Horseshoe lemma for M-projective and M-injective
modules. ’

Preliminaries

Through out this paper R denotes a ring with unity and all the modules considered
are left unitary modules over R.

The following definitions are due to Azumayya et al.?

Definition 1 : 4n R-module U is called M-projective if given a diagram

U
Vf
M- NS0
a

of R-modules and R-homomorphisms with exact row there is a R-homomorphism
8 1 U > M such that the resulting diagram is commutative.
Definition 2 : An R-module U is called M-injective if given a diagram

o
O->N->M

ok

U
of R-modules and R-homomorphisms with exact row there is a R-homomorphism
&1 M — U such that the resulting diagram is cummutative.

Proposition 1 : Any R-module U is M-projective if and only if given a diagram
U
Vf
M->Y->~Zz
a P
of R-modules and R-homomorphisms with exact row and Bof = 0 there exists a
R-homomorphism g : U — M such that the resulting diagram is commutative.
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Proposition 2 : An R-module U is M-injective if and only if given a diagram of
R-modules and R-homomorphisms of the form

a B
Z>Y > M
7
U
in which row is exact and f\,,  is monic there exists a R- homomorphism g : M — U
such that the resulting diagram is commutative.

Proof : Let U be M-injective. Since row is exact f|, rp is also monic so we have
a R-homomorphism /' : ImB — U given by f' (x) = f(y) where y € Y is such that
B(y) = x.Thus if i : Imp — M is the natural injection we have the diagram

i
0> Imp » M
VAP
U

in which the row is exact. Since U is M-projective there exists a R-homomorphism

g M — Usuchthatg oi = f'. Ifj : ¥ — ImPis defined by j (¥ ) = B(y) we have
the commutative diagram

a B
zZ — - M
it 11

i
0 > Imp > M
g
U
where f'o j = f and ] : M — M is the identity homomorphism. Converse is easily

seen to be true by letting Z = 0.

Remark : Here we observe that the proposition 2 above dualizes the proposition 1
of Singh et. al.l However we can’t dualize the proposition 2 of Singh et. al!

Definition 3 : For any module M let Cp (M) (respectively C; (M)) denotes the
class of M-projective (respectively M-injective) modules.

Proposition 3 : C, (M) (respectively C; (M ) is closed under direct sums
(respectively direct products) and direct summands (respectively direct factors).3

2. Main Result

Proposition 4 : Consider the diagram of R-modules and R-homomorphisms of the

Jform
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d ¥
U, Uy
apd VB
U, Us
ooy 1B,
0 - M - Mo m» -0
Vosog
0 0

in which the row is exact and columns are complexes with each U I and U I as
M-projective, i = 0, 1, 2, ... Then, there exists a M-projective resolution of M and chain
maps so that the columns Jorm an exact sequence of complexes,

Proof : Since for each i, U; and U;-/ are M-projective it follows that U;- ® U, is’
also M-projective for each /. Also for each ; the sequence

/. &,
0——>Ul-——>UI-@U,-—>UI-—>O

is split exact wherej? is the J-th canonical injection and g, is the i-th cannonical projection.
It now follows from proposition 3 that there exists a mapy, : U, @ U, — M such that
the resulting squares are commutative. The remaining proof now follows by induction
using Lemma 6.20 and 3 x 3 lemma?,

Proposition 5 : Consider the diagram of R-modules and R-homomorphisims of the
Jorm

0 0
4 f g <
0 M S M5 A - 0

(Xo\L J’BO

U, U
o 1By

£y Uj

& "

in which the row is exact and columns are complexes with each U | and U 1 as
M-injective, i = (), 1, 2, ... Then there exists a M-injective resolution of M and chain maps
80 that the columns form an exact sequence of complexes.
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Proof : Since

© 4cl 4 ad @ A, =1 4

iel iel iel iel

if / finite it follows that the proof of proposition 4 can be dualized to prove the result
using proposition 3.
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