C"-Reducible Finsler Space

T. N. Pandey and Bankteshwar Tiwari

Department of Mathematics, DDU Gorakhpur University, Gorakhpur-273009

(Received Dec. 27, 1997)

Abstract: Let C_{ijk} be the (h) hv- torsion tensor of an n-dimensional Finsler space F''. In view of the well known identity; $C_{ijk}|_I - C_{ijl}|_k = 0$ where we denote by |, the ν -covariant differentiation; $C_{ijk}|_I$ is symmetric in its all indices. The purpose of the present paper is to study a special Finsler space, the Cartan ν -derivative of whose (h) hv-torsion tensor can be written as:

$$L C_{ijk}|_{I} = h_{ijk} B_{l} + h_{jkl} B_{i} + h_{kli} B_{j} + h_{lij} B_{k}$$

where $h_{ijk} = -L^2 L |_i|_j |_k$, L being the fundamental function.

1. Introduction

Let us consider a Finsler space F^n of dimension n, whose Cartan v-derivative of (h) hv-torsion tensor can be written as

(1.1)
$$L C_{ijk} |_{l} = A_{ijk} B_{l} + A_{jkl} B_{i} + A_{kli} B_{j} + A_{lij} B_{k}$$

where A_{ijk} is assume to be symmetric but not proportional to C_{ijk} because in such case we can not solve (1.1) for B_i in general. In particular $B_i = 1_i$ for which (1.1) is nothing but vanishing of T-tensor which has been studied in detail¹.

Contracting (1.1) by y^1 we have :

(1.2a)
$$-L C_{ijk} = A_{ijk} B_o + A_{jko} B_i + A_{koi} B_j + A_{oij} B_k,$$

where "o" indicate contraction by y^k i.e. $B_o = B_i y^i$. Again contracting (1.2a) by y^k and moreover by y^j and y^i respectively we obtain.

$$0 = 2 A_{ijo} B_o + A_{joo} B_i + A_{ioo} B_j,$$

(1.2c)
$$0 = 3A_{ioo} B_o + A_{ooo} B_i,$$

$$0 = A_{\alpha\alpha\alpha} B_{\alpha}.$$

If $B_o \neq 0$ then (1.2) (d), (c), (b), (a) respectively imply

$$A_{ooo} = \, 0, \; A_{ioo} = \, 0, \; A_{ijo} = \, 0, \; A_{ijk} = \, - \, L \, / B_o \; \, C_{ijk}$$

which contradicts our assumption that A_{ijk} is not proportional to C_{ijk} . Therefore $B_o = 0$ and hence the equation (1.2c) gives $A_{ooo} = 0$. Further from (1.2b) we have

$$A_{ioo} B_i + A_{ioo} B_j = 0$$

which leads to

$$A_{ioo}\ B_i\ B_k = -\ A_{ioo}\ B_k\ B_j = A_{koo}\ B_i\ B_j = -\ A_{joo}\ B_i\ B_k$$

Thus $A_{ioo}=0$ or $B_i=0$. If $B_i=0$ then $LC_{ijk}|_{l}=0=LC_{ijk}|_{l}y^{l}=-LC_{ijk}$ leads to $C_{ijk}=0$. Consequently we have $A_{ioo}=0$. From (1.2a) we have $A_{ijo}\neq 0$, because F^n is non Riemannian. Thus we have :

Proposition 1: If v-derivative of the (h) hv-torsion tensor C_{ijk} of a Finsler space F^n is written in the from (1.1) then A_{ijk} and B_i satisfy $A_{ioo} = 0$, $A_{ijo} \neq 0$ and $B_o = 0$.

Now let us consider a tensor h_{ijk} defined by

$$(1.3) h_{ijk} = -L^2 L|_i|_j|_k = h_{ij} l_k + h_{jk} l_i + h_{ki} l_j$$

where h_{ij} is angular metric tensor and l_i is the unit line element.

It is obvious from the definition of h_{ijk} that

$$h_{ijo} = h_{ijk} y^k = L h_{ij} \neq 0$$

and

$$h_{ioo} = h_{ijk} y^j y^k = L h_{ij} y^j = 0.$$

Hence h_{ijk} satisfies the condition for A_{ijk} as given in proposition.

If $A_{ijk} = h_{ijk}$ in (1.1), then Contracting (1.1) by y^l and using $B_o = 0$ we have

$$-C_{iik} = h_{ik} B_i + h_{ik} B_j + h_{ij} B_k$$

Again contracting by g^{ki} and using the fact $g^{jk}h_{jk}=n-1$ and $g^{jk}h_{ik}B_{j}=B_{i}$ we have

$$B_i = -C_i/n + 1.$$

2. C"-Reducible Finsler Space

Definition: A non Riemannian Finsler space F^n of dimension n is said to be C^v -reducible iff the Cartan v- derivative of (h) hv-torsion tensor can be written as:

$$(2.1) LC_{ijk}|_{l} = -1/(n+1) \left[h_{ijk} C_{l} + h_{jkl} C_{i} + h_{kli} C_{j} + h_{lij} C_{k} \right]$$

Proposition 2: For $n \ge 3$, every C^{ν} -reducible Finsler space F^n is C-reducible, but converse need not be true. The necessary and sufficient condition for a C-reducible Finsler space to be C^{ν} -reducible is:

$$(2.2) LC_i|_j + C_i l_j + C_j l_i = 0.$$

Proof: For $A C^{\nu}$ -reducible Finsler space contracting (2.1) by y^{l} , we have,

(2.3)
$$C_{ijk} = 1/(n+1) \left[h_{ij} C_k + h_{jk} C_i + h_{ki} C_j \right]$$

which is (h) hv-torsion tensor of C-reducible Finsler space F^n as defined by M. Matsumoto². Since (h) hv-torsion tensor of a C-reducible Finsle spaces can be written in the form (2.3). Hence from proposition (3) of paper² there exist a scalar α in C-reducible Finsler space such that

(2.4)
$$L C_i|_j + C_i l_j + C_j l_i = \alpha h_{ij}.$$

Also we have

1

$$(2.5) L h_{ij} |_{k} = h_{ij} l_{k} - h_{ijk}.$$

Taking Cartan v-derivative of (2.3) with respect to y^{l} and using (2.4) and (2.5) we have

$$C_{ijk}|_{l} = \frac{1}{(n+1)} \cdot \left[\left(h_{ij}|_{l} C_{k} + h_{ij} C_{k}|_{l} \right) + \left(h_{jk}|_{l} C_{i} + h_{jk} C_{i}|_{l} \right) + \left(h_{ki}|_{l} C_{j} + h_{ki} C_{j}|_{l} \right) \right].$$
So
$$L C_{ijk}|_{l} = \frac{1}{(n+1)} \left[\left(h_{ij} l_{l} - h_{ijl} \right) C_{k} - h_{ij} \left(l_{l} C_{k} + l_{k} C_{l} - \alpha h_{kl} \right) + \left(h_{jk} l_{l} - h_{jkl} \right) C_{i} - h_{jk} \left(l_{l} C_{i} + l_{i} C_{l} - \alpha h_{li} \right) + \left(h_{ki} l_{l} - h_{kil} \right) C_{j} - h_{ki} \left(l_{j} C_{l} + l_{l} C_{j} - \alpha h_{jl} \right) \right]$$

$$= \frac{1}{(n+1)} \left[h_{ijk} C_l + h_{jkl} C_i + h_{kli} C_j + h_{lij} C_k \right]$$
$$+ \frac{\alpha}{(n+1)} \left[h_{ij} h_{kl} + h_{jk} h_{li} + h_{ki} h_{jl} \right]$$

Thus in order that the space is C^{ν} -reducible we must have

$$\frac{\alpha}{(n+1)} \left[h_{ij} h_{kl} + h_{jk} h_{li} + h_{ki} h_{jl} \right] = 0$$

Contracting by g^{ij} and g^{kl} we have $\alpha(n-1)=0$, which implies $\alpha=0$ for $n\neq 1$.

From (2.4), $\alpha = 0$ is equivalent to

$$L C_i|_j + C_i l_j + C_j l_i = 0$$

which completes the proof of second part.

Proposition 3: If a Finsler space F^n is C^{ν} -reducible then the T-tensor vanishes identically.

Proof: T-tensor of a Finsler space F^n can be written as

$$T_{ijk\,l} = L\,C_{ijk}\,|_{\,l} + \,C_{ijk}\,\,l_{l} + \,C_{jk\,l}\,\,l_{i} + \,C_{k\,li}\,\,l_{j} + \,C_{lij}\,\,l_{k}$$

For a C^{ν} -reducible Finsler space, $L C_{ijk \mid l}$ is given by (2.1). Putting values of $L C_{ijk \mid l}$ from (2.1) and C_{ijk} from (2.3) we have

$$\begin{split} T_{ijk\,l} &= -\,\frac{1}{(n\,+\,1)} \left[\,\,h_{ijk}\,\,C_l \,+\, h_{jk\,l}\,\,C_i \,+\, h_{k\,li}\,\,C_j \,+\, h_{lij}\,\,C_k\,\,\right] \\ &+ \frac{1}{(n\,+\,1)} \left[\,\left\{\,h_{ij}\,\,C_k \,+\, h_{jk}\,\,C_i \,+\, h_{k\,i}\,\,C_j\,\right\}\,\,l_l \,+\, \left\{\,h_{jk}\,\,C_l \,+\, h_{k\,l}\,\,C_j \,+\, h_{lj}\,\,C_k\,\right\}\,\,l_i \\ &+\,\left\{\,h_{k\,l}\,\,C_i \,+\, h_{li}\,\,C_k \,+\, h_{ik}\,\,C_l\,\right\}\,\,l_j \,+\, \left\{\,h_{li}\,\,C_j \,+\, h_{jj}\,\,C_l \,+\, h_{jl}\,\,C_i\,\right\}\,\,l_k\,\,\right] \end{split}$$

Using (1.3) we get $T_{ijkl} = 0$.

Theorem 1: The necessary and sufficient condition for a C^{v} -reducible Finsler space to be Berwald space is $C_{i\mid o}=0$

Proof: Let us consider Ricci identity

(2.6)
$$C_{ijk|l}|_{h} - C_{ijk}|_{h|_{I}} = -C_{rjk} P_{ilh}^{r} - C_{irk} P_{jlh}^{r} - C_{ijr} P_{klh}^{r} - C_{ijk}|_{r} C_{lh}^{r} - C_{ijk}|_{r} P_{lh}^{r}.$$

Contractig (2.6) by y^l we have

$$(2.7) C_{ijk|o|h} - C_{ijk|h} - C_{ijk|h|o} = 0.$$

Since a Berwald space is characterized by $C_{ijk\mid h}=0$. Thus from (2.7) for a Berwald space we have

$$(2.8) C_{ijk} |_{h \mid o} = 0.$$

It is obvious from (2.7) that $C_{ijk}|_{h|o} = 0$ is necessary as well as sufficient condition for a Finsler space to be Berwald space³.

For a C^{ν} -reducible Finsler space the value of $L C_{ijk} |_h$ is of the form

$$L C_{ijk}|_{h} = -\frac{1}{(n+1)} \left[h_{ijk} C_h + h_{jkh} C_i + h_{khi} C_j + h_{hij} C_k \right]$$

First differentiating above covariantly with respect to x^{l} and then contracting by y^{l} , we have

$$(2.9) L C_{ijk}|_{h\mid o} = -\frac{1}{(n+1)} \left[h_{ijk} C_{h\mid o} + h_{jkh} C_{i\mid o} + h_{khi} C_{j\mid o} + h_{hij} C_{k\mid o} \right]$$

For a Berwald space, using (2.8) in (2.9) and contracting by g^{ik} and y^h we have

$$(2.10) C_{i \mid o} = 0$$

which is a necessary condition for a C^{ν} -reducible space to be Berwald space. The sufficient part immediately follows from (2.9).

3. C -Reducibility of a Two Dimensional Finsler Space

Theorem 2: A two dimensional Finsler space is C^{ν} -reducible iff the main scalar I is function of position alone.

Proof: As is well known in two dimensional case, C_{ijk} is always written in the form

where m_i is unit vector orthogonal to the element of support y^l and scalar I is called principal scalar of two dimensional Finsler space. In this case, $h_{ij} = m_i m_j$, hence from (1.3) h_{ijk} for a two dimensional space, can be written as

(3.2)
$$h_{ijk} = m_i \ m_j \ l_k + m_j \ m_k \ l_i + m_k \ m_i \ l_j$$

Also we can easily obtain

$$(3.3) L m_{i|j} = -l_i m_j.$$

Differentiating (3.1) covariantly with respect to y^{l} and using (3.2) and (3.3) we have

(3.4)
$$L C_{ijk|l} = -1/3 \left[h_{ijk} C_l + h_{jkl} C_i + h_{kli} C_j + h_{lij} C_k \right]$$
$$+ \partial I / \partial y^l m_i m_j m_k.$$

From (3.4) It is obvious that in case, two dimensional Finsler space is C^{ν} -reducible, we have

$$(3.5) \partial I/\partial y^l = 0$$

which implies I is function of position only.

Form (3.4) and (3.5) It is clear that for C^{ν} -reducibility of a two dimensional Finsler space. It is necessary and sufficient that the main scalar is function of position alone.

4. C "-Reducibility of a Three Dimensional Finsler Space

Theorem 3: A three dimensional Finsler space is C^{ν} -reducible iff its main scalars are given by

$$H = 3I = \pm 3/\sqrt{2}$$
, $J = 0$

and the v-connection vector vanishes indentically.

Proof: It has already been proved by M. Matsumoto¹ in the (Theorem 30.1) that main scalar J of a three dimensional C-reducible Finsler space is zero. We have shown in Proposition 2 that every C^{ν} -reducible space is C-reducible.

Due to fact, J = 0 for any C^{ν} -reducible Finsler space of dimension three.

As shown in the Proposition 3, the T-tensor is identically zero for a C^{ν} -reducible Finsle space. Matsummoto has already shown in the Remark of Theorem [29.5] that vanishing of T-tensor imply $2J^2+I^2-HI=-1$ and ν -connection vector vanishes. Hence for a three dimensional C^{ν} -reducible Finsler space we have

$$J = 0$$
, $2J^2 + I^2 - HI = -1$, $v_i = 0$.

It is well known that (h) hv-torsion tensor of a three dimensional Finsler space in terms of Moor's frame can be written as

(4.1)
$$L C_{ijk} = H m_i m_j m_k - J \pi_{(ijk)} \left(m_i m_j n_k \right) + I \pi_{(ijk)} \left(m_i n_j n_k \right) + J n_i n_j n_k,$$

where H, I, J are main scalars of a three dimensional Finsler space, the scalars H and I are related as H + I = LC and the notation $\pi_{(ijk)}$ denotes the cyclic permutation of indices i, j, k, and summation. Since every C^{ν} -reducible Finsler space is C-reducible. Also due to fact for a three dimensional C^{ν} -reducible Finsler space C_{ijk} can be written as-

(4.2)
$$L C_{ijk} = \frac{L}{4} \left[h_{ij} C_k + h_{jk} C_i + h_{ki} C_j \right]$$

as well as from (4.1)

$$(4.3) LC_{ijk} = \pi_{(ijk)} \left\{ \left(H/3 \ m_i \ m_j + I \ n_i \ n_j \right) m_k \right\}$$

Comparing (4.2) and (4.3) we have H = 3I immediately. Putting H = 3I and J = 0 in the relation $2J^2 + I^2 - HI = -1$ we have

$$H = 3I = \pm 3 / \sqrt{2}$$
.

In order to prove sufficient part we put J=0 and $H=3I=3\varepsilon/\sqrt{2}$ (where $\varepsilon=\pm 1$) in (4.1), then we have

(4.4)
$$L C_{ijk} = 3\varepsilon / \sqrt{2} m_i m_j m_k + \pi_{(ijk)} \left\{ \varepsilon / \sqrt{2} m_i n_j n_k \right\}$$

M. Matsumoto¹ introduce two vectors v_i and h_i namely v-and h-connection vectors such that v-and h-Cartan derivative of unit vectors can be written in the form

(4.5a)
$$\begin{cases} L l^{i}|_{j} = \delta_{j}^{i} - l^{i} l_{j} \\ L m^{i}|_{j} = - l^{i} m_{j} + n^{i} v_{j}, \\ L n^{i}|_{j} = - l^{i} n_{j} - m^{i} v_{j} \end{cases}$$

(4.5b)
$$\begin{cases} l^{i}_{|j} = 0 \\ m^{i}_{|j} = n^{i} h_{j} \\ n^{i}_{|j} = -m^{i} h_{j} \end{cases}$$

and

$$h_{ijk} = \left(\ m_i \ m_j + \ n_i \ n_j \right) \ l_k + \left(\ m_i \ m_k + \ n_i \ n_k \right) \ l_j + \left(\ m_k \ m_j + \ n_k \ n_j \right) \ l_i$$

Differentiating (4.4) and putting values from (4.5a) and (4.5c), we have.

$$L C_{ijk}|_{l} = - \left. 1/4 \right\lceil h_{ijk} \ C_l + h_{jkl} \ C_i + h_{kli} \ C_j + h_{lij} \ C_k \right\rceil.$$

Hence the space is C^{ν} -reducible which completes the proof of sufficient part.

Theorem 4: $A C^{\nu}$ -reducible three dimensional Finsler space is Landsberg iff h connection vector is perpendicular to line element.

Proof: The (h) hv-torsion tensor of a three dimensional C^{ν} -reducible Finsler space is of the form (4.4). Differentiating (4.4) h-covariantly and using the fact $L_{|i} = 0$ and (4.5b), we have

$$(4.6) L C_{ijk \mid l} = \varepsilon / \sqrt{2} \pi_{(ijk)} \left(h_{ij} n_k \right) h_l$$

where $h_{ij} = m_i m_j + n_i n_j$ for a three dimensional Finsler space. Contracting (4.6) by y^l we have

(4.7)
$$L C_{ijk \mid o} = \varepsilon / \sqrt{2} \pi_{(ijk)} \left(h_{ij} n_k \right) h_o$$

A Landsberg space is characterized by $C_{ijk \mid o} = 0$. From equation (4.7), for a Landsberg space we have

$$n_i h_o = 0 \Rightarrow h_o = 0$$

which completes the necessary part of the Theorem. Sufficient part of the Theorem is obvious from equation (4.7).

References

- 1. M. Matsumoto: Foundation of Finsler geometry and special Finsler spaces. Kaiseisha Press Saikawa, Otsu, Japan, 1986.
- 2. M. Matsumoto: On C-reducible Finsler spaces, Tensor N. S., 24 (1972), 29-37.
- 3. F. Ikeda: Some remarks on Landsberg spaces, TRU Mathematics, 22-2 (1986).
- 4. U. P. Singh and B. N. Gupta: Symmetry of successive V-covariant derivatives of some tensors in special Finsler spaces, *J. Nat. Acad. Math.*, 4 (1986).