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Abstract : The infinitesimal transformation in a general form has been introduced and
Lie-derivatives of various geometric entities have been obtained!. The aim of the present
paper is to find the various entities of the deformed Finsler space and with the help of
these, certain common characteristics possessed by Finsler space and deformed Finsler
space have been derived.

1. Introduction

let F,, be an n-dimensional Finsler space equipped with the symmetric metric
tensor

(1) gy D & 155F ¢, 8= 00k

Since the metric function F (x, x) is assumed to be positively homogeneous of degree
one in x!’s, the metric tensor is homogeneous function of degree zero in x'’s. The
contravariant components of the metric tensor are given by

B _ 1 if h=1i,
) — S -
(1.2) g¥ By = 6}1 = '
0 if h=1i.
The Cartan’s covariant derivative of a tensor T} (x, x) with respect to x kis given by2
(1.3) Ti @ %) = T - (& T})G,lc fTIT - TITR, 8 = /ot
where

(1.4) Gl ¥ 5 Gl=T3) @ 3) 2"
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The functions G™ (x, x) are homogeneous of degree two in 3 ¢ sand T}l PREASS
are Cartan’s connection coefficients. The completely symmetric part of a geometric object
Qij is given by

def 1
(1.5) g, 92 E(QU,+QJ.,).

The infinitesimal transformation in the general form is given by
(1.6) )—cizxi+vi(x,)&) dr

where v’ (x, x) are the contravariant components of g vector and dx is an infinitesimal
constant.

2. Deformed Finsler Space

The deformed geometric object Q (x, x) of any geometric object Q (x, x ) under
the infinitesimal transformation (1.6) is given by3

2.1) 5(x,5c)=Q(x,ic)+DQ(x,5c).
L
Thus, we have
2.2) §(x,5c)=S(x,x)+[quk+{v{‘hxh

+ (4 vE) (i 4 264115, S |t

@3) X', %) = Xi(x, #) 4 [ X vt ~xk(vi v ah g, vi)
+ (61( X’){v{‘h " (ah vk)<;€h + 2Gh)}]d’c

24 g (& %) =g, (x,x)+[2gm(,{v;’g+c;;) 5, v

+ (am gl-j){v,”; e (6, vm) (5&’ + ZG’)}]dr
and

. o . . ol .
(2.5) L r #) = T (x,x)+[v"jk+v K;kh+(Gj a,,v'),k

+ (5h F;ki) {‘“’Jhm g 4 (ém vh) (x’" + 2G”’)}

s Y
+ (aj o' + ol v’) G/ ]dr
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Definition : The Finsler space Fy equipped with the above deformed geomelric
entities is called the deformed space of the Finsler space Fy:

3. Certain Common Characteristics Possessed by F, & ﬁn

In this section, we have the following theorems :

Theorem 3.1 : When the Finsler space F, admits a one parameter group of motions
generated by (1.6, « vector of constant magnitude deforms into a vector of the same
magnitude.

Proof : The magnitude of the deformed vector Xix, k), say X(x, x) is given
by

(3.1a) Y2 k) =g, X X7,
i

Using (2.3) and (2.4) in (3.1a) and neglecting the terms containing second and higher
powers of dt we get

s WL P 2 Lk 5 w2 [k 4!
Gy  XP@x) =X 3+ (X7) e (%) Pl !

+ (5;1 vk> (xh + 2G'L")}]dr

X (x, %) = g X' X,

where

Since X' (x, x) is a vector of constant magnitude, it follows from (3.1b) that

Y2, 1) = X2 (% %),

Theorem 3.2 : When the space Fy admits a one-parameter group of motions
generated by the infinitesimal change (1.6), an orthogonal ennuple in F,, deforms into an
orthogonal ennuple.

proof : Let A, (x, DNa=12,... n) be the unit tangents to n-CONgruences of
an orthogonal ennuple in F,, . The subscript a followed by a solidus simply distinguishes
one congruence from the other and has no significance of covariance. The contravariant
and covariant components' of A,/ will be denoted by %_2 s and hg/; respectively. Since
p-congruences are mutually orthogonal we have

51 if a=b,

(3.2 gy Moy ¥os = Bab )
k() if a=b.

The deformed vector of 7»2 7 1% x ) may be obtained from (2.3) in the form



32 R. B. Misra and C, K. Mishra

(3.3) Mas G %) = A (x, ) 4 [xg/,k vk _ k) (v(k + Gl g, v

+ (g )w[ 4 (8, v j(x’wzo@”m.

Using (2.4) and (3.3) and neglecting the terms containing powers of dr higher than one
we get

. o . Sk
G4 g, N, = 8ir Moy My + [(g,-j ar My, )I

[ ; ; .. (5 kY /- 7Y |
% iak(gl.j A xfb/))} {vh 5ty (5, v") ar 26" )| Jar
From (3.2) and (3.4) it follows that
(3.5) §ij Xciz/ )—jb/ =&y }‘51/ 7‘2/"

which proves the proposition,

Theorem 3.3 : The deformed scalar % Yabe 5, X) of the coefficient of rotation
Yabe (6 x)in £, given by

- e . : h
(3.6) Yap ¢ ('X‘ Y) = Yape (. x) + [yabcflz ¥

+ ((;j/z y(/bc) {Vh [ a’?’ V \ (xm * ’)GM\ FJ(/T

\ | m
Is the coefficient of rotation in the deformed space Ho
Proof : From previous theorem it follows that the deformed vectors K C{x, x) will

also be the unit tangents to the - congruences of an orthogonal ennuple in the deformed
Finsler space. The coefficient of rotation in F is given by

G.7) Yabe (6 X) =Xl m Ty TS,

where A/ oy (x, x ) represents the deformed value of the tensor X;/ y (v, x). Itis given
by

” T ; - % . r.
(3.8) Ag,,«fl, x. v) = Moy (6, x ) + J ke
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Also we have

it

(3.9) Tys G %) = Mg ©) + | R v

Ap/k (v\kl. + Gf’ éh vk) + (ak kb/i) {v{‘h xh

(8 vE) (8" + ZGh)}]dI.

Using the equations (3.3), (3.7), (3.8) and (3.9) and neglecting the terms containing
powers of dt higher than one we get the equation (3.6).

+

+

Theorem 3.4 : When the space F, admits a one-parameter group of motions
generated by the infinitesimal change (1.6), the geodesics of the congruence of an
orthogonal ennuple deform into geodesics.

Proof : If the curves of the congruence of an orthogonal ennuple are geodesics, we
have 7y, (5 x) = 0. Putting ¢ = b in (3.6) and using Yapp (x, x) = 0, we get
Yapp & x) = 0. Thus, we have the theorem.
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