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Abstract : In the present paper a theoreryn of Mohanty on the absolute Riesz summability
of Fourier series at a point is proved by means of an alternative, but equivalent, definition
of the method, which has distinct advantages for problems of absolute Riesz summability
of certain ‘types’.

1. Definitions and Notations

Let ¥ a, by an infinite series of real terms, and { A, } a positive, monotonic
increasing sequence, diverging to co. Let

4 (@) = B@ =T a,

AL o

@)= X ((o —kn)’an, r>0

A,
Ch(w) = AL @)/ ", r20.

Definition I ; The series 3" a,, is said to be absolutely summable by Riesz means
of ‘type’ A, and ‘order’ r, r 2 0, or summable | R, A,, r|, 7 2 0, if

Ch (@) € BV (h, x),
for some h = 0; Obrechkoff>?. By ‘f(w) € BV (a, b)’ we mean that fis a function of
bounded variation over (g, b).
An equivalent definition is given below.

Definition IT : Let A(@) be a positive, monotonic increasing, differentiable function
of o, diverging to «, defined over (4, ), where A is some positive constant. We write

A @) =A45@) =Y a,

n <o
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AL@) Y (@) -2 a,, r>o0

Ch@) =47 @)/ (@Y, r>o0

2 @, is said to be summable | R, A (@), r|, r = 0,iff

Ch(@) € BV (4, ),
where A is some positive constant; Mohantyz.

Evidently summability | R, Ay, 0] and summability | R, Mw), 0] are equivalent
to each other, each being equivalent to absolute convergence. It is easily seen that for
r>0also |[R, A, r| and |R, X (@), r| are equivalent methods of absolute
summability. The ‘First Theorem of Consistency’ for absolute Riesz summability states
that if any infinite series 2. @, is summable |R, A,, r|, r 20, then it is summable
IR, X,, r'|forevery r' > r. This is due to Obrechkoff % 4. It has been demonstrated
by Mohanty that summability IR, ¢® 1| (which is equivalent to summability
[R, e” 1| )isequivalent to absolute convergence; Mohanty 1 2.

Let / be a periodic, real-valued function, with period 27, integrable (L) over
(—m, m). Then the Fourier series of fis given by

1 - .
5o+ > (an cosnt + b, smnt),

n=1]

4 1 ™ cos nt
where b= f_n f@0) g
We write
1
() = 5 {fa+1)+/-0)}.

Evidently the Fourier series of £ ats = x is the same as the Fourier series of ¢
atr=0.

2. Introduction
Considering the example of the even periodic function fdefined as :
0 for 0<¢t<n/2,

J@) =

I for n/2 <t<nm,

and taken as periodic, with period 27, outside (=m, n), Mohanty observed that the
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condition

t=S0t) € BV (0, n), 8 >0,

does not ensure the absolute convergence of the Fourier series of fat £ = x; Mohantyz.

However, as proved by Mohanty, the following theorem is true.

Theorem : Mohamyz. If =0 o(t) € BV (0, m), & > 0, then the Fourier series of

1+1/8
£ at t=x, is summable | R, e v/ (log @) , 1.

For proving this theorem,”  Mohanty uses the Definition I of summability
|R, Ay, 7|, 720, The purpose of this paper is to give an alternative proof of the
theorem by means of the equivalent Definition II. It turns out that our analysis is
more convenient. This also corroborates Mohanty’s own observations (Mohantyz), that
Definition 11 has ‘distinct advantages’ over Definition 1, when we deal with such

problems.

Forr>0, m<wo <m+ 1, we have

d (=, | _ _r¥(© i
%{Cx(w)} = i ,Em (M©) = M) ¥ A a,.

Hence summability | R, A(@), |, r > 0, is equivalent to :

J-OO }\I ((D)
4 )y

don < ©.

T (M) - M T A ay,

n<w

@1

In particular, when r = 1, (2.1) reduces to

- [* ko)

d 0.
i) ) v

S M) a,

n<o

3. The Lemmas

We shall need the following lemmas.

Lemma 1. The case : 0 <8 < 1 is stated in Mohantyz. The Fourier series of the
even periodic function defined in (—m, m)as |t | 8 (3 > 0) and elsewhere by periodicity,
with period 2m, is absolutely convergent att=0.

Proof : Let the Fourier series of the function be

1 oo
5% * > ¢, cos at.

n=1
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Then, for 0 < & < 1,

¢y = ;2[ J.t‘scos nt dt
0
5 1/n 5 bis
:;‘-J. t‘scosntdt + ~ J' 1 cos nt dr
0 1/n
=1 + I, say.
Now
) 1/n
I = 0| = | [ cosnar 0 <& < 1/n)
n %
g

by the Second Mean Value Theorem. Hence

: 1/n [
I =0 LS sin ni -0 1 ‘
n n £ n1+6
Next
2 T
L == J.tﬁcosntdl
ﬁl/n
2 ssinm ™ 25 |
:~t5§mﬁn} =22 [ g
T T on
1/n 1/n
g
=0 — 0 i_1 f i d, 1/n<E<
= T Gl 5 sin nt dt (I/n<E<m)
1/n
by the Second Mean Value Theorem. Hence
1 1 | —cosnt |&
1 o[« of ] =2
n 7 " 1/n
1
=0 = .
(nl‘f'b]
If& =1, then
2 n
Cn:; thcosntdt
0
1/n 5 ki
== [ cosmar + 2 [ 13 cos nr
s 7
0 /n
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We have
2 1 v 1 | sinnt (17
‘ - sin n n
J1=;;§ .[COS”Idt:O(;—S . ‘\ ) (0<E<1/n)
-4
=
1 1
EnHB] (nz)
Also
2 ssini]™ 25 [
J2=—"5§m“n—t} 22| S lsinmat
n n T on
1/n 1/n
T
N 1 1 )
=0 1+56 + O} — J-smntdt (1/n<k<m)
n n :

Il
Qe
TN
=
’—‘b—‘
“+
=2
R
+
=)
AT
BN I__
()
N—

Thus, if 0 <d < 1,

and, if d 2 1,

In either case

T e, | < .

Lemma 2. Uniformly in0 < t < w, ford > 0,

¢
3.D g, ) = jus ( > Am cosnu)du
0 \nSC\!
= O(tsﬂg(logm)‘&),
where

AG) = e/ A =1+ 1/5.
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Proof : We have
{

g(o, 1 = J.u_B 2. An)cosnu | du

0 n<o

‘
=3 k(n) _[ 1® cos nu du

n<o 0

t
=0 > xn) J.cosm/du O <E&<)

n<o &

sin nt — sin n
=49 > An) Siwb — pinug
n

n<
=19 > %) sinnt — 1% el sinng
n<o & n<o n
3.1.1) ~ 3] pl 5 Bullt]
n<o “
Now, form < o < m + 1,
() M A ) K
=X+ <A+ f — ;
n<w n n=2 2 * o
(3.1 2) m}\ M m}\
J 2% = [0 [ 2950 (41 defined below),
2 x 2 M x
Also
N o(x) = (1 - ij(x)/(logx)ﬁ
log x
and hence

m

m
/ A
Ide:I b1s) (g idx (x2M>eA:>10gx>logM>A)

% A B
M M 1 -
log x
I)1" ,
<K | “)E*) (log )™ d
M

(here and in the sequel, X ia an absolute positive constant)
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LA m YA
_ ,{@ (log ) } kL (Qp_)_},
x M M ax *

- O(M%%g_@ﬁj £ J 7‘—5? F (x) dx, say.
( M

Hence

m ’ RV n
(3.13) f K—(Yxl g = OLM%EL) o l—(jl # () o
M M

Given £ > 0, 0 < € < 1, we can choose M such that, for x > M, | F(x)| < &, lLe.
- < Fx) <e

Then

1-¢o @dx < %@(1 _F(x)dx
M M

= O(%@‘(log m)A]

by (3.1.3), so that

nt

[ 20 4 - O(M“’) (logm)A].

©

X
M
Hence from (3.1.2), keeping M fixed,
y M) _omy+o0 20 og @)t | 4 O A (@)
nLo " ‘ @ @

=0 (&—gb—) (log m)AJ.

Therefore, from (3.1.1),

g(w, t) = 0(15 ki)m) (logm)Aj.

Lemma 3. Uniformly in0 <t <m, 8 >0,

T

(3.2) hio, t) = J'HB > Mn)cos nu | du
! n<w
of i),
®
where

x/(log x)A

Ax) =e ,A =1+ 1/8.
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Proof : We have

s
hio, 1y =3 Mn) fu‘s cos mu cli

nso !
s
=Y A [ cosmudi (<& <
n<e 3

S sin 71 €
= - gd > Mn) =
n<o #

=0 > &%Qsinng

n<aw

_ 0[5-1 M]

(€Y

_ O[[—l &(L’)J
w

by Abel’s lemma, since A(n)/n is ultimately monotonic increasing.

4. Proof of the Theorem

It is enough to show that

A(w) \ [
J. W Z M) A, (x) | do < w.
4 n=<o

Now

T

Y M4, () = 72; [ o) S an) cos nr

n<o 0 nswo

T

t

2
= Z1730(1) _f 0 > A(n) cos nu | du
L 0 n<o "

i {

J fztB > M) cos nu | du d(t‘scp(l))
0

0 n<o

2
n

A

=Kg@, m~=< g, r)d(z-%(t)).

0
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Thus it is enough to show :

M) d w»
4.1 /'1[ Mo )2 lg(o, mldo <

and

jn\g(w, t)\\d(t_ﬁcp(t)>\d03 < .

-2

; {7»(@)}2

Since ¢t “S o) € BV (0, m), [ <, if, uniformly in 0 <£<m,

N©)

42
2 j {Mw)}

5 18, Hldo = 0.

Proof of (4.1) : This is the same as the summability | R, Mw), 1| of the Fourier
series of the even function : | tl & > 0, in (-7, m) and defined by periodicity outside
(—-m, m). This is a consequence of Lemma 1 and the First Theorem of Consistency for
absolute Riesz summability.

Proof of (4.2) : Let

r=e™ B3
We have
f{k((m))} lg(, )] do :;{;‘(( ))} (g (@, )]do
j {;(( 2 g, n) = h(o, £)|do
j{;‘((m))}‘ g0, m)|do + {I{ o S 1g, Oldo

M) / y
I{M f [ AHAD.

We have already proved (4.1). Hence it is enough to prove that, uniformly in 0 <t <m,

()

3 L g (o, )ldo = 0
“3) : J{A(@)} g, )jde = 0)
and &

@4 L= @ o, 1)]do = O

7 o)’
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By Lemma 2,

I =0 tsj {igiiz )ibggﬁ_d

_ sfdo (., | _ Mo A
-0 tAj - [x(m)_aogm)A[l 1Ong

- O(tS t—lgj - o),

e
o

Also, by Lemma 3,

-1 k(w) k(co)
f M) o ¢

_do

. o(log (o)A

_ -1
- O(I (10g T)I/BJ

- O[t_l t%l] - o).

Thus (4.3) and (4.4) are proved. This completes the proof of the theorem.
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