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Abstract: For any connected graph 𝐺 = (𝑉, 𝐸) with real numbers 𝑎, 𝑏 

and a positive integer 𝑘, the Steiner distance is denoted by 𝑑𝐺(𝑆) for a 

set of vertices 𝑆 ⊆ 𝑉(𝐺) is defined as the minimum size of connected 

subgraphs that include a given set of vertices 𝑆 with 𝑆 = 𝑘. In this article, 

we introduce a new version of the Steiner-Gutman index for a graph 𝐺, 

defined it as 

 𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺) = ∑ (∏ 𝑑𝐺(𝑣𝑖)𝑣𝑖∈𝑆

)
𝑎

𝑆⊆𝑉(𝐺),|𝑆|=𝑘 𝑑𝐺(𝑆)
𝑏 

where 𝑎 and 𝑏 are any real numbers. In this paper, we obtained some 

best possible inequalities and their characterizations in terms of the 

order, size, minimum / maximum degree, and diameter of 𝐺. Also, the 

comparisons of 𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺) with other graphical indices are obtained. 
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1. Introduction 

 

The graphs considered in this paper are undirected, simple, finite, and 

connected. The graph 𝐺 = (𝑉, 𝐸) has 𝑝-vertices and 𝑞-edges, where 𝑉 =
𝑉(𝐺) and 𝐸 = 𝐸(𝐺) represent the vertex and edge collections, respectively. 

The degree of a vertex 𝑣𝑖 is defined as the number of vertices adjacent to it 

and is denoted by 𝑑𝐺(𝑣𝑖). If a vertex is adjacent to only one edge, it is called 

a pendant vertex. The distance between two vertices in a graph is given by 

𝑑𝐺(𝑣𝑖, 𝑣𝑗), the shortest path length between 𝑣𝑖 and 𝑣𝑗 . The greatest distance 

between any two vertices in a graph 𝐺 is called the diameter of the graph and 

is denoted by 𝑑𝑖𝑎𝑚(𝐺). For undefined notations in this paper, we refer to the 

paper1,2. 

The Wiener index, the first distance-based graph invariant, was 

introduced by Harold Wiener3 in 1947. Wiener’s research revealed 
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connections between the boiling points of paraffins and their molecular 

structure. The Wiener index, represented as 𝑊(𝐺), is calculated by adding 

the distances between all pairs of vertices within a connected graph 𝐺. In other 

words  

𝑊(𝐺) = Ʃ
𝑣𝑖,𝑣𝑗⊆𝑉(𝐺)

𝑑𝐺(𝑣𝑖 , 𝑣𝑗). 

In 1989, Chartrand4 introduced the Steiner distance of a graph. This 

distance is represented by 𝑑𝐺(𝑆) and measures the connectivity of a subset of 

vertices 𝑆 in a graph 𝐺. The minimum number of edges is needed to connect 

all the vertices in 𝑆, where 𝑆 ⊆ 𝑉(𝐺). 
In 1994, Gutman5 proposed the Gutman index of a connected graph 𝐺 and 

is defined as 

𝐺𝑢𝑡(𝐺) = Ʃ
{𝑣𝑖,𝑣𝑗}∈𝑉(𝐺)

𝑑(𝑣𝑖)𝑑(𝑣𝑗)𝑑(𝑣𝑖 , 𝑣𝑗). 

This index is a numeric measure of the molecular branching of a chemical 

compound represented by a molecular graph. 

In 2018, Mao6 introduced the Steiner Gutman index of a connected graph 

𝐺. This index measures the molecular branching and connectivity of a 

molecular graph simultaneously. It is defined as 

𝑆𝐺𝑘(𝐺) = Ʃ
𝑆⊆𝑉(𝐺),|𝑆|=𝑘

( Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)) 𝑑𝐺(𝑆), 

where 𝑘 is the size of the subset 𝑆. 

Analogously, we now defined the Generalized Steiner Gutman index for a 

connected graph 𝐺 as 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺) = Ʃ

𝑆⊆𝑉(𝐺),|𝑆|=𝑘
( Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖))
𝑎

𝑑𝐺(𝑆)
𝑏, 

where 𝑎 and 𝑏 are any real numbers. 

For historical developments, applications, and mathematical properties of 

graphical indices and its related concepts, see the papers7-24 and the references 

cited therein. 
 

2. Bounds and Charactirization  
 

To prove the next couple of results, we use the following definition of 

Narumi and Katayama25. 

The Narumi–Katayama index of a graph 𝐺 is defined as 

𝑁𝐾(𝐺) = Π
𝑣𝑖∈𝑉(𝐺)

𝑑𝐺(𝑣𝑖). 

Theorem 2.1.  Let 𝐺 be a connected graph and ∣ 𝑆 ∣= 𝑝 with real numbers 

𝑎, 𝑏. Then 

𝑆𝐺(𝑎,𝑏)
𝑝 (𝐺) = (𝑁𝐾(𝐺))

𝑎
(𝑝 − 1)𝑏 . 
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Proof. Let 𝐺 be a connected graph and ∣ 𝑆 ∣= 𝑝 with real numbers 𝑎, 𝑏. 

Then 𝑑𝐺(𝑆) = 𝑝 − 1 and Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖) = 𝑁𝐾(𝐺). Therefore 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺) = Ʃ

𝑆=𝑉(𝐺)
( Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖))
𝑎

𝑑𝐺(𝑆)
𝑏 

= (𝑁𝐾(𝐺))
𝑎
(𝑝 − 1)𝑏 

Theorem 2.2.  Let 𝐺 be a connected graph and 𝑆 ⊂ 𝑉(𝐺) with |𝑆| = 𝑝 −
1, 𝑎 ≥ 0 and 𝑏 ≥ 0. Then 

   𝑝 (
𝑁𝐾(𝐺)

𝛥(𝐺)
)
𝑎
(𝑝 − 2)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)

𝑝−1 (𝐺) ≤ 𝑝 (
𝑁𝐾(𝐺)

𝛿(𝐺)
)
𝑎
(𝑝 − 1)𝑏 . 

Proof. Let 𝐺 be a connected graph with |𝑆| = 𝑝 − 1 for 𝑆 ⊂ 𝑉(𝐺) and 

each subset 𝑆 of 𝑉(𝐺) satisfies 

       
𝑁𝐾(𝐺)

𝛥(𝐺)
≤ Π

𝑣𝑖∈𝑆
𝑑𝐺(𝑣𝑖) ≤

𝑁𝐾(𝐺)

𝛿(𝐺)
. 

This inequality remains the same if we raise a positive power 𝑎 to each side: 

(2.1)    (
𝑁𝐾(𝐺)

𝛥(𝐺)
)
𝑎

≤ [ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

≤ (
𝑁𝐾(𝐺)

𝛿(𝐺)
)
𝑎

. 

The value of 𝑑𝐺(𝑆) is either (𝑝 − 2) or (𝑝 − 1), and for 𝑏 ≥ 0, the following 

inequality holds: 

(2.2)     (𝑝 − 2)𝑏 ≤ 𝑑𝐺(𝑆)
𝑏 ≤ (𝑝 − 1)𝑏 . 

Taking the product of equations (2.1) and (2.2) for each subset 𝑆 of 𝑉(𝐺), we 

have 

Ʃ
𝑆⊂𝑉(𝐺)
|𝑆|=𝑝−1

(
𝑁𝐾(𝐺)

𝛥(𝐺)
)

𝑎

(𝑝 − 2)𝑏 ≤ Ʃ
𝑆⊂𝑉(𝐺)
|𝑆|=𝑝−1

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏 

≤ Ʃ
𝑆⊂𝑉(𝐺)

|𝑆|=𝑝−1

(
𝑁𝐾(𝐺)

𝛿(𝐺)
)

𝑎

(𝑝 − 1)𝑏 , 

On simplification, we have the desired result. 

By Theorem 2.2, the following Theorem’s can be obtained and we omit their 

proofs. 

Theorem 2.3.  Let 𝐺 be a connected graph and 𝑆 ⊂ 𝑉(𝐺). 
(i) If 𝑎 ≤ 0 and 𝑏 ≥ 0, then 

𝑝 (
𝑁𝐾(𝐺)

𝛿(𝐺)
)

𝑎

(𝑝 − 2)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)
𝑝−1 (𝐺)

≤ 𝑝 (
𝑁𝐾(𝐺)

𝛥(𝐺)
)

𝑎

(𝑝 − 1)𝑏 .
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(ii) If 𝑎 ≤ 0 and 𝑏 ≤ 0, then 

𝑝 (
𝑁𝐾(𝐺)

𝛿(𝐺)
)

𝑎

(𝑝 − 1)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)
𝑝−1 (𝐺)

≤ 𝑝 (
𝑁𝐾(𝐺)

𝛥(𝐺)
)

𝑎

(𝑝 − 2)𝑏 .

 

(iii) If 𝑎 ≥ 0 and 𝑏 ≤ 0, then 

𝑝 (
𝑁𝐾(𝐺)

𝛥(𝐺)
)

𝑎

(𝑝 − 1)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)
𝑝−1 (𝐺)

≤ 𝑝 (
𝑁𝐾(𝐺)

𝛿(𝐺)
)

𝑎

(𝑝 − 2)𝑏 .

 

Theorem 2.4.  Let 𝐺 be a connected graph and 𝑆 ⊂ 𝑉(𝐺) with 2 ≤ 𝑛 ≤
𝑝 − 1. 

(i) If 𝑎 ≥ 0 and 𝑏 ≥ 0, then 

𝑝 (
𝑁𝐾(𝐺)

𝑛𝛥(𝐺)
)

𝑎

(𝑝 − 𝑛 − 1)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)
𝑝−𝑛 (𝐺)

≤ 𝑝 (
𝑁𝐾(𝐺)

𝑛𝛿(𝐺)
)

𝑎

(𝑝 − 𝑛)𝑏.

 

(ii) If 𝑎 ≤ 0 and 𝑏 ≥ 0, then 

𝑝 (
𝑁𝐾(𝐺)

𝑛𝛿(𝐺)
) (𝑝 − 𝑛 − 1)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)

𝑝−𝑛 (𝐺)

≤ 𝑝(
𝑁𝐾(𝐺)

𝑛𝛥(𝐺)
)

𝑎

(𝑝 − 𝑛)𝑏 .

 

(iii) If 𝑎 ≤ 0 and 𝑏 ≤ 0, then 

𝑝 (
𝑁𝐾(𝐺)

𝑛𝛿(𝐺)
)

𝑎

(𝑝 − 𝑛)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)
𝑝−𝑛 (𝐺)

≤ 𝑝 (
𝑁𝐾(𝐺)

𝑛𝛥(𝐺)
)

𝑎

(𝑝 − 𝑛 − 1)𝑏 .

 

(iv) If 𝑎 ≥ 0 and 𝑏 ≤ 0, then 

𝑝 (
𝑁𝐾(𝐺)

𝑛𝛥(𝐺)
)

𝑎

(𝑝 − 𝑛)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)
𝑝−𝑛 (𝐺)

≤ 𝑝 (
𝑁𝐾(𝐺)

𝑛𝛿(𝐺)
)

𝑎

(𝑝 − 𝑛 − 1)𝑏 .

 

Theorem 2.5.  Let 𝐺 and 𝐺′ be the connected graphs, and 𝐺′ be obtained 

by deleting an edge in 𝐺. If 𝑎 ≤ 0 and 𝑏 ≥ 0, then 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺) ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺′). 
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Proof. Let 𝐺 and 𝐺′ be the connected and 𝑆 ⊆ 𝑉(𝐺) with |𝑆| = 𝑘. Then 

the removal of the edge will not decrease the value 𝑑𝐺(𝑆) since 𝐺′ is obtained 

by the removal of an edge in a graph 𝐺, which implies that 𝑑𝐺(𝑆) ≤ 𝑑𝐺′(𝑆) 
for some 𝑆 ⊆ 𝑉(𝐺). For every subset 𝑆 ⊆ 𝑉(𝐺) with 𝑏 ≥ 0, we have 

(2.3)        𝑑𝐺(𝑆)
𝑏 ≤ 𝑑𝐺′(𝑆)

𝑏 

If 𝑣𝑖 and 𝑣𝑗  are adjacent in 𝐺, then the same vertices need not be adjacent in 

𝐺′. For each 𝑆 ⊆ 𝑉(𝐺), we have 

Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖) ≥ Π
𝑣𝑖∈𝑆

𝑑𝐺′(𝑣𝑖). 

Now, raising the power with 𝑎 ≤ 0 on both sides, 

(2.4)     [ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

≤ [ Π
𝑣𝑖∈𝑆

𝑑𝐺′(𝑣𝑖)]
𝑎

. 

Taking the product of equations (2.3) and (2.4) for each subset 𝑆 of 𝑉(𝐺), we 

have The product of the above equations results 

Ʃ
𝑆⊆𝑉(𝐺),|𝑆|=𝑘

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏 ≤ Ʃ

𝑆⊆𝑉(𝐺′),|𝑆|=𝑘
[ Π
𝑣𝑖∈𝑆

𝑑𝐺′(𝑣𝑖)]
𝑎

𝑑𝐺′(𝑆)
𝑏, 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺) ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺′). 

Corollary 2.1.  Let 𝐺 and 𝐺′ be the connected graphs and 𝐺′ is obtained 

by deleting an edge in 𝐺. If 𝑎 ≥ 0 and 𝑏 ≤ 0, then 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺) ≥ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺′). 

Theorem 2.6.  Let 𝐺 be a connected graph and 𝑆 ⊆ 𝑉(𝐺) with 𝑎 ≥ 0 and 

𝑏 ≥ 0. Then 

(
𝑝

𝑘
) 𝛿(𝐺)𝑘𝑎(𝑘 − 1)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺) ≤ (
𝑝

𝑘
)𝛥(𝐺)𝑘𝑎(𝑝 − 1)𝑏 

Proof. Let 𝐺 be a connected graph and 𝑆 ⊆ 𝑉(𝐺) with |𝑆| = 𝑘. For each 

𝑆 ⊆ 𝑉(𝐺) and 𝑎,  𝑏 ≥ 0, we have 

(2.5)      𝛿(𝐺)𝑘𝑎 ≤ [ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑆)]
𝑎

≤ 𝛥(𝐺)𝑘𝑎 

and 

(2.6)          (𝑘 − 1)𝑏 ≤ 𝑑𝐺(𝑆)
𝑏 ≤ (𝑝 − 1)𝑏 . 

The product of equation (2.5) and equation (2.6), for each 𝑆 ⊆ 𝑉(𝐺), we have 

(
𝑝

𝑘
) 𝛿(𝐺)𝑘𝑎(𝑘 − 1)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺) ≤ (
𝑝

𝑘
) 𝛥(𝐺)𝑘𝑎(𝑝 − 1)𝑏 

By Theorem 2.6, the following Theorem’s can be obtained and we omit their 

proofs. 

Theorem 2.7.  Let 𝐺 be a connected graph and 𝑆 ⊆ 𝑉(𝐺). 
(i) If 𝑎 ≥ 0 and 𝑏 ≤ 0, then 
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(
𝑝

𝑘
) 𝛿(𝐺)𝑘𝑎(𝑝 − 1)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺) ≤ (
𝑝

𝑘
)𝛥(𝐺)𝑘𝑎(𝑘 − 1)𝑏 . 

(ii) If 𝑎 ≤ 0 and 𝑏 ≥ 0, then 

(
𝑝

𝑘
)𝛥(𝐺)𝑘𝑎(𝑘 − 1)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺) ≤ (
𝑝

𝑘
) 𝛿(𝐺)𝑘𝑎(𝑝 − 1)𝑏 . 

(iii) 𝑎, 𝑏 ≤ 0, then 

(
𝑝

𝑘
)𝛥(𝐺)𝑘𝑎(𝑝 − 1)𝑏 ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺) ≤ (
𝑝

𝑘
)𝛿(𝐺)𝑘𝑎(𝑘 − 1)𝑏 . 

Theorem 2.8.  Let 𝐺 be a connected graph with 𝑑𝑖𝑎𝑚(𝐺) = 2, 𝑘 ≥ 3 and 

𝑎 ≤ 0,  𝑏 ≥ 0. Then 

(
𝑝 − 1

𝑘 − 1
) (𝑝 − 1)𝑎(𝑘 − 1)𝑏 +(

𝑝 − 1

𝑘
) 𝑘𝑏

≤ 𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺)

≤ (
𝑝 − 2

𝑘
) (𝑝 − 1)𝑘𝑎(𝑘 − 1)𝑏

+2(
𝑝 − 2

𝑘 − 1
) (𝑝 − 1)(𝑘−1)𝑎(𝑝 − 2)𝑎(𝑘 − 1)𝑏

+(
𝑝 − 2

𝑘 − 2
) (𝑝 − 1)(𝑘−2)𝑎(𝑝 − 2)2𝑎(𝑘 − 1)𝑏 .

 

Proof. Let 𝐺 be a connected graph, and let 𝑆 ⊆ 𝑉(𝐺) have a 𝑑𝑖𝑎𝑚(𝐺) =
2. If 𝑎 ≤ 0, the removing an edge from 𝐺 will decreases the values of 𝑑𝐺(𝑣𝑖) 

and (𝑑𝐺(𝑣𝑖))
𝑎
. Similarly, if 𝑏 ≤ 0, not increase the value of 𝑑𝐺(𝑆) and not 

decrease the value (𝑑𝐺(𝑆))
𝑏
. 

The star attains the lower bound with 𝑎 ≥ 0 and 𝑏 ≤ 0. 

(2.7)    (𝑝−1
𝑘−1

)(𝑝 − 1)𝑎(𝑘 − 1)𝑏 + (𝑝−1
𝑘
)𝑘𝑏 ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺). 

We need to reverse the above mentioned process to find the upper bound. For 

this purpose, we add an edge, which increases the values of 𝑑𝐺(𝑣𝑖)
𝑎 and does 

not decrease the value of 𝑑𝐺(𝑆). If we delete one edge in a complete graph, 

we get the graph with the maximum possible number of edges with 

𝑑𝑖𝑎𝑚(𝐺) = 2, giving us the upper bound. 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺) ≤ Ʃ

𝑆⊆𝑉(𝐺),
∀𝑣𝑖 :𝑑𝐺(𝑣𝑖)=𝑝−1

[ Π
𝑣𝑖∈𝑆

(p− 1)]
𝑎

𝑑𝐺(𝑆)
𝑏

+ Ʃ
𝑆⊆𝑉(𝐺),

exists 𝑣𝑖 :𝑑𝐺(𝑣𝑖)≠𝑝−1

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏
 

(2.8) 
𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺) ≤ [(𝑝−2
𝑘
)(𝑝 − 1)𝑘𝑎 + 2(𝑝−2

𝑘−1
)(𝑝 − 1)(𝑘−1)𝑎(𝑝 − 2)𝑎](𝑘 − 1)𝑏

+(𝑝−2
𝑘−2

)(𝑝 − 1)(𝑘−2)𝑎(𝑝 − 2)2𝑎(𝑘 − 1)𝑏 .
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By equation (2.7) and equation (2.8), the desired result follows. 

Lemma 2.1.  Let 𝐺∗ be a connected graph with maximum possible edges 

and 𝑑𝑖𝑎𝑚(𝐺∗) = 3. Then 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺∗) = (

𝑝 − 2

𝑘
) (𝑝 − 3)𝑘𝑎(𝑘 − 1)𝑏

+(
𝑑𝐺∗(𝑣1)

𝑘 − 1
)𝑑𝐺(𝑣1)

𝑎(𝑝 − 3)𝑎(𝑘−1)(𝑘 − 1)𝑏

+(
𝑑𝐺∗(𝑣2)

𝑘 − 1
)𝑑𝐺(𝑣1)

𝑎(𝑝 − 3)𝑎(𝑘−1)𝑘𝑏

+(
𝑑𝐺∗(𝑣2)

𝑘 − 1
)𝑑𝐺(𝑣2)

𝑎(𝑝 − 3)𝑎(𝑘−1)(𝑘 − 1)𝑏

+(
𝑑𝐺∗(𝑣1)

𝑘 − 1
)𝑑𝐺(𝑣2)

𝑎(𝑝 − 3)𝑎(𝑘−1)𝑘𝑏

+(
𝑑𝐺∗(𝑣1)

𝑘 − 2
)(𝑝 − 3)𝑎(𝑘−1)(𝑘𝑏 − (𝑘 − 1)𝑏)

+(
𝑑𝐺∗(𝑣2)

𝑘 − 2
) (𝑝 − 3)𝑎(𝑘−1)(𝑘𝑏 − (𝑘 − 1)𝑏)

+(
𝑝 − 2

𝑘 − 2
) (𝑝 − 3)𝑎(𝑘−1)(𝑘 − 1)𝑏 ,

 

where 𝑎, 𝑏 are real numbers and 𝑑𝐺(𝑣1) + 𝑑𝐺(𝑣2) = 𝑝 − 2. 

Proof. Consider a graph 𝐺∗ with 𝑑𝑖𝑎𝑚(𝐺∗) = 3 and the maximum 

possible edges. Since 𝑑𝑖𝑎𝑚(𝐺∗) = 3, a pair of vertices (𝑣1, 𝑣2) must exist 

such that the distance between them is 3. Hence, the remaining (𝑝 − 2)-
vertices in the graph must be adjacent to each other, and each of these 
(𝑝 − 2)-vertices must be connected to the vertices of either 𝑣1 or 𝑣2. 

Therefore, the partition of (𝑝 − 2)-vertices into sets 𝑉1 and 𝑉2 is such that 

vertices in 𝑉1 are adjacent to vertex 𝑣1 with |𝑉1| = 𝑑𝐺∗(𝑣1) and vertices in 𝑉2 

are adjacent to vertex 𝑣2 with |𝑉2| = 𝑑𝐺∗(𝑣2). This implies that, the degree 

of vertices 𝑣1 and 𝑣2 is at least 1, and 𝑑𝐺∗(𝑣1) + 𝑑𝐺(𝑣4) = 𝑝 − 2 , while all 

other vertices have degree (𝑝 − 3). 
Thus, the value of 𝑑𝐺∗(𝑆) is 𝑘 − 1 for 𝑆 ⊆ 𝑉(𝐺∗) with |𝑆| = 𝑘, if any of the 

following conditions hold, 

(i) the vertices in 𝑆 are chosen from (𝑝 − 2)-vertices, excluding 𝑣1 and 𝑣2. 

(ii) the vertices in 𝑆 include 𝑣1 and 𝑣2, along with at least one vertex from 

the partitions 𝑉1 and 𝑉2. 

(iii) the vertices in 𝑆 include 𝑣1 but not 𝑣2, and at least one vertex from 𝑉1, 

and vice versa. 

In all other cases, 𝑑𝐺∗(𝑆) = 𝑘. 
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For 𝑑𝐺∗(𝑣1) ≥ 𝑑𝐺∗(𝑣2) ≥ 𝑘 = |𝑆|, then 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺∗) = Ʃ

𝑆⊆𝑉1∪𝑉2
[ Π
𝑣𝑖∈𝑆

𝑑𝐺∗(𝑣𝑖)]
𝑎

𝑑𝐺∗(𝑆)
𝑏

+ Ʃ
𝑆⊆𝑉1∪{𝑣1},

𝑣1∈𝑆

[ Π
𝑣𝑖∈𝑆

𝑑𝐺∗(𝑣𝑖)]
𝑎

𝑑𝐺∗(𝑆)
𝑏

+ Ʃ
𝑆⊆𝑉2∪{𝑣1},

𝑣1∈𝑆

[ Π
𝑣𝑖∈𝑆

𝑑𝐺∗(𝑣𝑖)]
𝑎

𝑑𝐺∗(𝑆)
𝑏

+ Ʃ
𝑆⊆𝑉1∪{𝑣2},

𝑣1∈𝑆

[ Π
𝑣𝑖∈𝑆

𝑑𝐺∗(𝑣𝑖)]
𝑎

𝑑𝐺∗(𝑆)
𝑏

+ Ʃ
𝑆⊆𝑉2∪{𝑣2},

𝑣1∈𝑆

[ Π
𝑣𝑖∈𝑆

𝑑𝐺∗(𝑣𝑖)]
𝑎

𝑑𝐺∗(𝑆)
𝑏

+ Ʃ
𝑆⊆{𝑣1,𝑣2}∪𝑉1∪𝑉2,

𝑣1,𝑣2∈𝑆

[ Π
𝑣𝑖∈𝑆

𝑑𝐺∗(𝑣𝑖)]
𝑎

𝑑𝐺∗(𝑆)
𝑏.

 

Based on the above facts, the desired result follows. ◻ 

Lemma 2.2. Let 𝑆𝑚,𝑛 be a double star with 𝑚 ≥ 𝑛 ≥ 𝑘 and 𝑑𝐺(𝑣1) +
𝑑𝐺(𝑣2) = 𝑝. Then 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝑆𝑚,𝑛) = ((

𝑚 − 1

𝑘
) + (

𝑛 − 1

𝑘
))𝑘𝑏 + (

𝑝 − 2

𝑘 − 2
) (𝑚𝑛)𝑎(𝑘 − 1)𝑏

+[(
𝑚 + 𝑛 − 2

𝑘
) − (

𝑚 − 1

𝑘
) − (

𝑛 − 1

𝑘
)] (𝑘 + 1)𝑏

+∑(
𝑚

ℎ
)

𝑘−1

ℎ=1

(
𝑛

𝑘 − ℎ − 1
) (𝑚𝑎 + 𝑛𝑎)𝑘𝑏

+(
𝑚 − 1

𝑘 − 1
) (𝑚𝑎(𝑘 − 1)𝑏 + 𝑛𝑎𝑘𝑏)

+(
𝑛 − 1

𝑘 − 1
)𝑚𝑎𝑘𝑏(𝑚𝑎𝑘𝑏 + 𝑛𝑎(𝑘 − 1)𝑏),

 

where the double star graph 𝑆𝑚,𝑛 is a tree obtained by joining the center of 

two stars 𝑆𝑚 and 𝑆𝑛 with an edge. 

Proof. Let 𝑆𝑚,𝑛 be a double star with 𝑚 ≥ 𝑛 ≥ 𝑘 and 𝑑𝐺(𝑣1) + 𝑑𝐺(𝑣2) =
𝑝. If the central vertices of stars 𝑆𝑚 and 𝑆𝑛 are 𝑣1 and 𝑣2, respectively, with 

𝑉1 is the set of pendant vertices adjacent to 𝑣1, and 𝑉2 is the set of vertices 

adjacent to 𝑣2. Therefore, the degree of vertices 𝑣1 and 𝑣2 are 𝑚 and 𝑛, 

respectively. 

For any 𝑆 ⊆ 𝑉(𝐺), the value of 𝑑𝐺(𝑆) is lies between 𝑘 − 1 and 𝑘 + 1, we 

have 
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𝑆𝐺(𝑎,𝑏)
𝑘 (𝑆𝑚,𝑛) = Ʃ

𝑆⊆𝑉1
[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏 + Ʃ

𝑆⊆𝑉2
[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏

+ Ʃ
𝑆⊆𝑉1∪𝑉2,
𝑆⊈𝑉1,𝑆⊈𝑉2

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏 + Ʃ

𝑆⊆𝑉1∪{𝑣1},
𝑣1∈𝑆

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏

+ Ʃ
𝑆⊆𝑉2∪{𝑣1},

𝑣1∈𝑆

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏 + Ʃ

𝑆⊆𝑉(𝐺)−{𝑣2},
𝑣1∈𝑆,

𝑆⊈𝑉1∪{𝑣1},
𝑆⊈𝑉2∪{𝑣1}

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏

+ Ʃ
𝑆⊆𝑉1∪{𝑣1},

𝑣2∈𝑆

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏 + Ʃ

𝑆⊆𝑉2∪{𝑣2},
𝑣2∈𝑆

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏

+ Ʃ
𝑆⊆𝑉(𝐺)−{𝑣1},

𝑣2∈𝑆,
𝑆⊈𝑉1∪{𝑣2},
𝑆⊈𝑉2∪{𝑣2}

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏 + Ʃ

𝑆⊆𝑉(𝐺)

{𝑣1,𝑣2∈}

[ Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)]
𝑎

𝑑𝐺(𝑆)
𝑏

 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝑆𝑚,𝑛) = (

𝑚 − 1

𝑘
)𝑘𝑏 + (

𝑛 − 1

𝑘
)𝑘𝑏

+[(
𝑚 + 𝑛 − 2

𝑘
) − (

𝑚 − 1

𝑘
) − (

𝑛 − 1

𝑘
)] (𝑘 + 1)𝑏

+(
𝑚 − 1

𝑘 − 1
)𝑚𝑎(𝑘 − 1)𝑏 + (

𝑛 − 1

𝑘 − 1
)𝑚𝑎𝑘𝑏

+∑(
𝑚

ℎ
)

𝑘−1

ℎ=1

(
𝑛

𝑘 − ℎ − 1
)𝑚𝑎𝑘𝑏

+(
𝑚 − 1

𝑘 − 1
)𝑛𝑎𝑘𝑏 + (

𝑛 − 1

𝑘 − 1
)𝑛𝑎(𝑘 − 1)𝑏

+∑(
𝑚

ℎ
)

𝑘−1

ℎ=1

(
𝑛

𝑘 − ℎ − 1
)𝑛𝑎𝑘𝑏 + (

𝑝 − 2

𝑘 − 2
) (𝑚𝑛)𝑎(𝑘 − 1)𝑏

 

Based on the above facts, the desired result follows.  

Observation 2.1.  Let 𝐺 be a connected graph and 𝑆 ⊆ 𝑉(𝐺) with |𝑆| =
𝑘, 𝑎 ≤ 0, 𝑏 ≥ 0 and 𝑑𝑖𝑎𝑚(𝐺) = 3. Then 

(i) If 𝑎 ≥ 0, 𝑏 ≤ 0, then 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐾𝑚,𝑛) ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺) ≤ 𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺∗) 

(ii) If 𝑎 ≤ 0, 𝑏 ≥ 0, then 

𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺∗) ≤ 𝑆𝐺(𝑎,𝑏)

𝑘 (𝐺) ≤ 𝑆𝐺(𝑎,𝑏)
𝑘 (𝐾𝑚,𝑛) 
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3. Comparision among degree-distance based indices  

 

If 𝑓(𝑥, 𝑦) = (∏ 𝑎𝑖
𝑘
𝑖=1 )

𝑥
𝑏𝑦 is a function in two variables, where 𝑎𝑖 ∈

{1,2, … , 𝑝 − 1}, 𝑏 ∈ {𝑘 − 1, 𝑘, … , 𝑝 − 1} and 𝑥 and 𝑦 are real numbers, then 

𝑓(𝑥, 𝑦) is a strictly increasing function. We have the following inequalities 

among the existing indices for a fixed value of 𝑎, 𝑏, and 𝑘. 

For fixing 𝑎 = 0 and 𝑘 = 2, 

𝑆𝐺(0,−2)
2 (𝐺) < 𝑆𝐺(0,−1)

2 (𝐺) < 𝑆𝐺(0,1)
2 (𝐺) 

Ʃ
{𝑣𝑖,𝑣𝑗}⊆𝑉(𝐺)

1

𝑑(𝑣𝑖, 𝑣𝑗)
2 < Ʃ

{𝑣𝑖,𝑣𝑗}⊆𝑉(𝐺)

1

𝑑(𝑣𝑖, 𝑣𝑗)
< Ʃ

{𝑣𝑖,𝑣𝑗}⊆𝑉(𝐺)
𝑑(𝑣𝑖, 𝑣𝑗) 

𝐻2(𝐺) < 𝐻(𝐺) < 𝑊(𝐺). 

Theorem 3.1.  Let 𝐺 be a connected graph and 𝑆 ⊆ 𝑉(𝐺) with 2 ≤ 𝑘 ≤
𝑝 − 2. Then 

𝐺𝑢𝑡(𝐺) ≤ 𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺). 

Proof. Let 𝐺 be a connected graph and 𝑆 ⊆ 𝑉(𝐺) with 2 ≤ 𝑘 ≤ 𝑝 − 2. 

Now for any any {𝑣𝑖, 𝑣𝑗} ⊆ 𝑉(𝐺), there exist 𝑆 ⊆ 𝑉(𝐺) such that {𝑣𝑖 , 𝑣𝑗} ⊆ 𝑆 

and 𝑑𝐺(𝑣𝑖)𝑑𝐺(𝑣𝑗) ≤ ∏ 𝑑𝐺𝑣𝑖∈𝑆
(𝑣𝑖). Which is also satisfies 𝑑𝐺(𝑣𝑖, 𝑣𝑗) ≤

𝑑𝐺(𝑆), we have 

Ʃ
𝑣𝑖,𝑣𝑗⊆𝑉(𝐺)

(𝑑𝐺(𝑣𝑖)𝑑𝐺(𝑣𝑗))𝑑𝐺(𝑣𝑖, 𝑣𝑗) ≤ Ʃ
S⊆𝑉(𝐺)

( Π
𝑣𝑖∈𝑆

𝑑𝐺(𝑣𝑖)) 𝑑𝐺(S) 

𝐺𝑢𝑡(𝐺) ≤ 𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺). 

 

4. Conclusion and Open problems  
 

For any two real numbers 𝑎 and 𝑏, the Generalized Steiner gutman index 

of a graph lies on the claim that their special cases, for pertinently chosen 

values of the parameters 𝑎, 𝑏, and 𝑘, with the vast majority of previously 

considered vertex degree-distance based topological indices. This research 

raises several questions and observations from a comparative advantage, 

applications, and mathematical standpoint. 

(i) When the values of 𝑎 ≥ 𝑏 ≥ 0 are fixed, the complete graph reaches 

the maximum value of 𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺). The path or the star can reach the 

minimum value of 𝑆𝐺(𝑎,𝑏)
𝑘 (𝐺) depending on the value of 𝑎. However, 

the bounds will be reversed if we choose 𝑎 ≤ 𝑏 ≤ 0. 

(ii) If 𝐺 is a tree with diameter d, then the number of pendent vertices varies 

between ⌈
𝑝

𝑑
⌉ to (𝑝 − 𝑑 + 1). However, the bounds for the tree with 

diameter d are still an open problem. 
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