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Abstract: For any connected graph G = (V, E) with real numbers a, b
and a positive integer k, the Steiner distance is denoted by d;(S) for a
set of vertices S € V(G) is defined as the minimum size of connected
subgraphs that include a given set of vertices S with S = k. In this article,
we introduce a new version of the Steiner-Gutman index for a graph G,
defined it as

SGé{a,b)(G) = ZSQV(G),ISI:k(HviES dg (Vi))a dg (S)b
where a and b are any real numbers. In this paper, we obtained some
best possible inequalities and their characterizations in terms of the
order, size, minimum / maximum degree, and diameter of G. Also, the
comparisons of SG("a_b) (G) with other graphical indices are obtained.
Keywords: Wiener index, Steiner index, Steiner gutman index.
2020 AMS Subject Classification: 05C05; 05C07; 05C09; 05C12.

1. Introduction

The graphs considered in this paper are undirected, simple, finite, and
connected. The graph G = (V, E) has p-vertices and g-edges, where V =
V(G) and E = E(G) represent the vertex and edge collections, respectively.
The degree of a vertex v; is defined as the number of vertices adjacent to it
and is denoted by d; (v;). If a vertex is adjacent to only one edge, it is called
a pendant vertex. The distance between two vertices in a graph is given by
d¢(v;,v;), the shortest path length between v; and v;. The greatest distance
between any two vertices in a graph G is called the diameter of the graph and
is denoted by diam(G). For undefined notations in this paper, we refer to the
paper!?,

The Wiener index, the first distance-based graph invariant, was
introduced by Harold Wiener® in 1947. Wiener’s research revealed
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connections between the boiling points of paraffins and their molecular
structure. The Wiener index, represented as W (G), is calculated by adding
the distances between all pairs of vertices within a connected graph G. In other
words

W =, L de@i)

In 1989, Chartrand* introduced the Steiner distance of a graph. This
distance is represented by d; (S) and measures the connectivity of a subset of
vertices S in a graph G. The minimum number of edges is needed to connect
all the vertices in S, where S € V(G).

In 1994, Gutman® proposed the Gutman index of a connected graph G and
is defined as

Gut(@) = T d@)d(y)d(vi,v).
This index is a numeric measure of the molecular branching of a chemical
compound represented by a molecular graph.

In 2018, Mao® introduced the Steiner Gutman index of a connected graph
G. This index measures the molecular branching and connectivity of a
molecular graph simultaneously. It is defined as
k = .
s¢*@ =, 2 (1,de@))deS),
where k is the size of the subset S.

Analogously, we now defined the Generalized Steiner Gutman index for a
connected graph G as

S6t () = M de(v)) da(S)",

Foce
Scv(G),|S|=k \v;eS
where a and b are any real numbers.

For historical developments, applications, and mathematical properties of
graphical indices and its related concepts, see the papers’->* and the references
cited therein.

2. Bounds and Charactirization

To prove the next couple of results, we use the following definition of
Narumi and Katayama?.
The Narumi—Katayama index of a graph G is defined as
NK(G)= 1 d;;).

v;€V(G)
Theorem 2.1. Let G be a connected graph and | S |= p with real numbers
a, b. Then

SGE, ) (6) = (NK(6))"(p — .
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Proof. Let G be a connected graph and | S |= p with real numbers a, b.
Then d;(S) =p — 1 and l'le d;(v;) = NK(G). Therefore
v

$6 (@ = 3 (1 dew)) da(s)"

v;ES

= (NK(®) (p - 1"
Theorem 2.2. Let G be a connected graph and S c V(G) with |S| =
1,a=0and b = 0. Then

NK(G) NK(G)\¢
p (M99 (p - 20 < 5625 (6) < p (S2)" p - 1),

Proof. Let G be a connected graph with |S| =p —1 for S c V(G) and
each subset S of VV(G) satisfies

NK(G) NK(G)
—_— ) <
20 = MW = T
This inequality remains the same if we raise a positive power a to each side:
NK(G) NK(G)\¢
2.1) 52 < | B dov, | < (52 -

The value of d;(S) is either (p — 2) or (p — 1), and for b > 0, the following
inequality holds:

(2.2) (p—2)" <de(S) < (p-1D"

Taking the product of equations (2.1) and (2.2) for each subset S of V(G), we
have

5}(6) <NK(G)> (p-2)< SC% [ I dg (vl)] d;(5)?

A(6) V;ES
[s|=p—1 [s|=p-1

NK(G) )
= 5c§(6)< 5(6) > @ -1

[S|=p-1

On simplification, we have the desired result.

By Theorem 2.2, the following Theorem’s can be obtained and we omit their
proofs.

Theorem 2.3. Let G be a connected graph and S < V(G).
(i) fa<o0andb = 0,then

p (w) ®-2" <SG, G

0(G)
NK(&)\*
_p< 200 ) (- D"
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(if) Ifa <0andb <0, then

NK(G)\*
p <%) -1’ <SGI ,(6)
NK(G)\*
< p( A(é))> v =2~

(iii) Ifa>0and b < 0, then

p <1\Zig))a -1 <SG, (©6)
(50 oo
Theorem 2.4. Let G be a connected graph and S c V(G) with 2 <n <
p_%i') Ifa>0andb > 0, then
() -n- 17 <o)
<p (',Vf;((g)) ) 0 —n.

(i) Ifa < 0andb > 0, then

NK(G) -n
p <n5(G) > (p-n-1" <SG ;5(6)
NK(G)\*
Sp<nA((G))> (p —n)P.

(iii) fa<0and b < 0, then

NK(G)
P <n5(G)

a
> (-’ <SG \(6)

NK(&\*
Sp(nA((G))> (p —n— 1P,

(iv) Ifa=0and b < 0, then
NK(&)\* n
p(m(a)) -n’ <SG \(6)
NK(G)\"
< p<n6((G))> (p—n—1)>.

Theorem 2.5. Let G and G’ be the connected graphs, and G’ be obtained
by deleting anedge in G. If a < 0 and b > 0, then

SGE 1y (G) <SG, (G).
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Proof. Let G and G’ be the connected and S € V(G) with |S| = k. Then
the removal of the edge will not decrease the value d (S) since G' is obtained
by the removal of an edge in a graph G, which implies that d;(S) < d;,(S)
for some S € V(G). For every subset S < V(G) with b > 0, we have

(2.3) dg($)” < dg (S)°

If v; and v; are adjacent in G, then the same vertices need not be adjacent in
G'. Foreach S € V(G), we have

N> .
vgsdc(vl) = viHESdGr(vl)-

Now, raising the power with a < 0 on both sides,

a a
2.4) [vilgsdc(vi)] < Linesdg,(vi)] .
Taking the product of equations (2.3) and (2.4) for each subset S of V' (G), we
have The product of the above equations results

a a
. b ) b
sgV(Gz):,|s|=k [vil:[ESdG (v‘)] dg(S)” = SEV(G%,lSl:k [vESdG'(vl)] dg: (S),

SGp(G) < SGE, ) (G.

Corollary 2.1. Let G and G' be the connected graphs and G’ is obtained
by deleting anedge in G. Ifa = 0 and b < 0, then

SGE 5y (G) = SGE, 1) (G).

Theorem 2.6. Let G be a connected graph and S € V(G) witha > 0 and
b > 0.Then

(Z) 8(GY*a(k — 1)? <SG, ) (6) < (Z) AGY*e(p — 1)P

Proof. Let G be a connected graph and S € V(G) with |S| = k. For each
ScV(G)anda, b = 0, we have

(2.5) 5(G)ka < [ngdG(S)]a < A(G)k
and l
(2.6) (k—1)P <d;(S)P < (p— 1)P.

The product of equation (2.5) and equation (2.6), foreach S < V(G), we have
p ka(y _ 1\b k p Ka(y _ 1\b
(i) 8(@*e e = 1) <SGl (&) < () AP~ 1)

By Theorem 2.6, the following Theorem’s can be obtained and we omit their
proofs.
Theorem 2.7. Let G be a connected graph and S € V(G).
(i) fa=0andb <0, then
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(i) 5(6)K(p — 1) < SGL, ) (6) < (Z) A(G)<(k — 1)°,
(i) Ifa<0andb >0, then

p ka b K p ka b

(1) 4@k = 1) < 56l ,(©) < () 8@ (p — 1),
(i) a,b < 0, then

(i) AGY4(p — 1) < SGK,) (6) < (Z) 5(6) (K — 1)°.

Theorem 2.8. Let G be a connected graph with diam(G) = 2,k = 3 and
a<0,b>=0.Then

(p_ 1) (0 — 1%k — 1) +(p_1)k”

k-1 k
< SG{, ) (6)
< (") @ - v -1y
e (Z _ i) - D&V -2)%(k - 1)"
" (Z _ i) (- D*Dp —2)*(k - 1)".

Proof. Let G be a connected graph, and let S € V(G) have a diam(G) =
2. If a < 0, the removing an edge from G will decreases the values of d; (v;)

and (dg(v;))". Similarly, if b < 0, not increase the value of d;(S) and not

decrease the value (dg (S))b.

The star attains the lower bound with a > 0 and b < 0.

2.7) C D@ - DUk — 1P+ (P )k <SG (6).

We need to reverse the above mentioned process to find the upper bound. For
this purpose, we add an edge, which increases the values of d; (v;)* and does
not decrease the value of d;(S). If we delete one edge in a complete graph,

we get the graph with the maximum possible number of edges with
diam(G) = 2, giving us the upper bound.

SGln(©) < L~ D)| do(s)”

Yo, |
scv(6), v;ES
Vv; :dg(w;)=p-1

0 dew)| de(s)?
| 1o

scv(6),
exists v; :dg(vy)#p—1

SGl (G <[P - DR+ 202 (p - DEVep — 2)%](k — 1)°

(2:8) +(2H) @ - DED4(p — 2)%(k — 1)P.
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By equation (2.7) and equation (2.8), the desired result follows.
Lemma 2.1. Let G* be a connected graph with maximum possible edges
and diam(G*) = 3. Then
k . p—2
SG(a,b)(G ) = ( k
dg(v 1)>

)@ - 3k - 1

+ dg(v)*(p = 3)** D (k — 1)°

dg+(v2)

+ g (v,)%(p — 3)20~Dk?

46 (V2 4 (wy)a(p — Byate= (i — 1yp

g (v)(p — 37Dk

—+

(p 3)a(k 1)(kb (k _ 1)b)

+

[
(¢7)
(¢7)
(e7)
(-)
(i-

> 3)a(k—1)(kb _ (k _ 1)b)

+(* 7)o -0y,

where a, b are real numbers and d;(v;) + dg(v,) = p — 2.

Proof. Consider a graph G* with diam(G*) = 3 and the maximum
possible edges. Since diam(G*) = 3, a pair of vertices (v, v,) must exist
such that the distance between them is 3. Hence, the remaining (p — 2)-
vertices in the graph must be adjacent to each other, and each of these
(p — 2)-vertices must be connected to the vertices of either v; or v,.
Therefore, the partition of (p — 2)-vertices into sets /; and V, is such that
vertices in V; are adjacent to vertex v; with |V;| = dg+(v,) and vertices in V,
are adjacent to vertex v, with |V,| = dg-(v,). This implies that, the degree
of vertices v; and v, is at least 1, and dg+(v,) + dg(v,) = p — 2, while all
other vertices have degree (p — 3).

Thus, the value of d;-(S) isk — 1 for S € V(G*) with |S| = k, if any of the
following conditions hold,

(i) the vertices in S are chosen from (p — 2)-vertices, excluding v, and v,.
(if) the vertices in S include v; and v,, along with at least one vertex from

the partitions V; and V.

(iii) the vertices in S include v, but not v,, and at least one vertex from V,,
and vice versa.
In all other cases, d;+(S) = k.
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For dg-(v1) = dg+(v,) = k = |S], then
SGE (@G = 3 |1 .dg (vl)] dG*(S)”

SV, UV, vles

b
sevSwa | llgsda (vl) da )
V,ES

b
5SSV, Uy}, vl_ésda (vl) dG ()
1.7165

b
s;vl%{vz} Ul-ésdc (vl) dG )
v,€S

r 1a
SQVZ%{vZ}, _vlre[SdG (171)_ dg*(5)
17165

L(S)P
SCS{v1,v5}UV UV;, [vlesdc (vl)] dg-(S)”.
Vq,V2ES
Based on the above facts, the desired result follows. O
Lemma 2.2. Let S, , be a double star with m >n > k and d;(v,) +

d;(v,) = p. Then
SGlor (Smn) = ((m,: N+ (" 1)) e+ (07 2) nmyace - 1y

A ) e
SO o e

+ (Zl_ 11> (m*(k — 1)® + n%k?)
n-1 b b b

+ (k B 1) m%k (mak +n%k—-1) ),
where the double star graph S, ,, is a tree obtained by joining the center of
two stars S,,, and S,, with an edge.

Proof. Let S,, , be a double star withm > n > k and d; (v1) + dg(v,) =

p. If the central vertices of stars S,,, and S,, are v, and v,, respectively, with
I/, is the set of pendant vertices adjacent to v,, and V, is the set of vertices
adjacent to v,. Therefore, the degree of vertices v; and v, are m and n,
respectively.

For any S € V(G), the value of d;(S) is lies between k — 1 and k + 1, we
have
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$6m(Smn) = 8, 160 do9)? + 5 [ o] datsy

scv scv2 [

+ oot [ 0] dotor + deo)| ()

5CV1UV2 SSV;U{ry}, [U €S
SEV,,SLV, v, €S

40| do(sy + 45| do(sy”

x| L
SSV,U{w,}, lv;es Scv(G)—{v,},

V1 ES V4 ES,

SEV;U{v,},
SEV,U{v,}
b b
sevZon [ a v )] da+ 3 [vgsda(m] dg(S)
v,€S v,€S
b b
tovdon o] dsr+ 3 [ 1] des)
v,ES, {viv2€}
SZV,U{v,},
SEZV,U{v,}

stun(Sn) = (" Y+ (T, )
m+n-—2 m—1 n—1
(G B (P S (P I [CE %

+(m_1) a(k 1)b+("_1) ajb
k—1)™ Kk—1)™

k-1

+;(T) (ko)

Y
k-1

+ Z (r;ll (k - Z - 1) n®k? + (Z 2) (mn)®(k — 1)°
h=1

Based on the above facts, the desired result follows.
Observation 2.1. Let G be a connected graph and S < V(G) with |S|
k,a<0,b>0anddiam(G) = 3. Then
(i) Ifa=0,b<0,then
SG(ka,b) (Km,n) < SGéca,b)(G) < SG(ka,b)(G*)
(i) Ifa<0,b>=0,then
SGEpy(GT) < SGE 1y (6) < SGE, 1y (Kmn)
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3. Comparision among degree-distance based indices

If £(x,y) = (12, ;) b” is a function in two variables, where a; €
{1,2,...,p—1}, b e {k—1,k,...,p — 1} and x and y are real numbers, then
f(x,y) is a strictly increasing function. We have the following inequalities
among the existing indices for a fixed value of a, b, and k.
For fixinga = 0and k = 2,

SG(zo,—z)(G) < 56(20,—1)(6) < 56(20,1)(5)

{Vi.vj}ZEV(G) d(vi, vj)z < {Viﬂ’j}ZEV(G) d(vi, vj) < {Vi.vj}ZSV(G)d(vi' vj)
H?(G) < H(G) < W(G).

Theorem 3.1. Let G be a connected graph and S € V(G) with2 < k <

p — 2. Then
Gut(G) < SG{, ,y(6).

Proof. Let G be a connected graph and S € V(G) with 2 <k <p — 2.
Now for any any {v;, v;} € V(G), there exist S € V(G) such that {v;, v;} € S
and dg(v)dg(v;) < [ly,es de (v). Which is also satisfies dg(v;,v;) <
d:(S), we have

vi,vjév((;)(dc(vi)dc(vj))d(; (vi' vj) < Sgg(a) (vire[sdG (Vi)> dg Q)
Gut(G) < SGE, 1 (6).

4. Conclusion and Open problems

For any two real numbers a and b, the Generalized Steiner gutman index
of a graph lies on the claim that their special cases, for pertinently chosen
values of the parameters a, b, and k, with the vast majority of previously
considered vertex degree-distance based topological indices. This research
raises several questions and observations from a comparative advantage,
applications, and mathematical standpoint.

(i) When the values of a > b > 0 are fixed, the complete graph reaches
the maximum value of SG("a_b)(G). The path or the star can reach the

minimum value of SG("a’b)(G) depending on the value of a. However,

the bounds will be reversed if we choose a < b < 0.
(if) If G is atree with diameter d, then the number of pendent vertices varies

between [g] to (p —d + 1). However, the bounds for the tree with
diameter d are still an open problem.
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