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Alwtroct. The conditions for the framed metric structure induced on the submamtold of «

Kihler manifold and for the induced framed metric suucture on the submanifold of

Kihler manifold to be normal ure obtained. Few algebraic relations in the framed metne

submanifold of a Kihler manifeld to be normal with {7 as a killing vector have also been
R

derived. Conditions for a manifold Vx to be a framed mewric submanifold of a nearly
Kahler manifold Vir are obtained. Some results in a framed metric submanifold of a nearly
Kihler manifold are obtained and conditions for this manifold to be totally geodesic and
having I‘J as a killing vector have been investigated.

1. Introduction
Let us consider an even dimensional diftferentiable manitold Vv, of differentiability

class C~ with a vector- valued real linear function F of class €™, satisfying
(1.1) F sl =0

The V  is said to be an almost complex manifold and (F} is said to give an almost
complex structure to V. If the almost complex manifold is endowed with an almost
complex structure F and a Hermite metric G such that

1.2) GFX.FH)y=G(X. .

then {F, G} is said to give to Vv, an almost Hermite structure and the manitold V, s
. oot

called an almost Hermite manitold

An almost Hermite manifold for which

(1.3) (E,F)Y=0.

is satisfled. is called a Kihler manifold. where E is the Riemunnian connexion on V)
An almost Hermite manifold for which

(1.4) (}E\F) Y-H'E}.F‘) X =0

18 satisfied, is called a nearly Kihler or an almost Tachibana maniioikl Let us constder an

L, L

n-dimensional differentiable manifold Vot ditferentabiliny class (7L where 0 r 40,
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and r is even with f-structure of rank r. Let there exist on V,, s vector fields U and s
X

I-forms ux, such that

(1.5) ) f11,=u"8®U,
equivalently
(1.5) b) X+X=uXU, ¢ fX=X
X
(1.5) d) T=0, & u(U)=5, 1) uof=0.
X y R

where X is an arbitrary vector field X in V . Then we say that f-structure has
complemented frames and V_ is said to be a globally-framed f-manifold or simply a

framed manifoldl. Let a metric tensor g be defined in a framed manifold V , satisfying

(1.6) a) g(i?):g(X,Y)—i(X)ﬁm, b)fa(X)d=efg(X,U)

X

Then the system {f, [;I 1); g} is said to give to V a framed metric structure and the
manifold V, is called a framed metric manifold'.

Let us put ‘

(1.7 fX,N=gXY)

Then ’f(X, ) == "f(¥, X), i.c. f is skew-symmetric in X and Y, and ' f(X, ¥) =" f(X, V),
ie.’fishybridin X and Y.

A framed manifold V,_ is said to be normal1 if I, f1 +du® U=0, where [,f] is the
X
Nijenhuis tensor of the structure f. This equation is equivalent to

(D) Y= Dy ) X+[(Dy )X =f(Dy ) Y+ Dy ) (N = (Dy ) (X)1 U=0.

Let us now consider the two differentiable manifolds Vm and Vn of class C~ with

structures {F, G} and {f, g} and dimensions m and n respectively. Let b be the inclusion
map defined by b:V —V . such that peVn= bpeV . inclusion map b induces a
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Jacobian map B, defined by B : T'll - T'ln where T,I, is tangent space to V, at a point p and
T']n is tangent space to V_ at the point bp such that X in V,atp=BXinV atbp.
Let g be the induced metric tensor in V. then (G (BX, BY))o b=g((X, V). Let

Na: a=n+1, -, mbe a system of Cc” mutually orthogonal unit normal vector fields in
vV, atp. Then

(1.8) a) (GIN,BX))ob=0, b) (GIN,

o

o [1f o=
NB))OI)_bB_{O it op

Let E be the Riemannian connexion in Vm and let D be the induced Riemannian
§ e § . . . . 1
connexion in Vn‘ The Gauss equations and the Weingarten equations are given by

(1.9) Egy BY=BDy Y +'H(X. DN,
E,,N=-BHX+L(X)N,
(1.10) px Y H +uB(X) ;

where "H are the symmetric bilinear functions in vV, and
a

.11 cHA N Y HX =g X HY.
a [V 4 o

H are known as Weingarten maps and 0{‘(3 are third fundamental forms in V . If the
o
submanifold be totally geodcsicl, then

(1.12) '"H(X,)=0.
04

The transformations of BX and N by F are represented in the forms of tangential and
o
normal parts as follows:
(1.13) a) FBX=BX+u(X)N. b) FN=-BU,
o 04 Ry

The conditions that Vn be a framed metric submanifold of a Kihler manifold Vm are

(1.14) 2) DN Y=u(NHX-—"HX, U, b) (DXZ)Y=—'H(X,?)—BL(X)'1,‘;(Y).
o [+ 4 X o (0.4
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The condition that on the framed metric submanifold of a Kilnler manifold, U is a Killing
X
3
vector is

(1.15) HX-LX)U=0.

o Pa x

If the framed metric structure on the submanifold of a Kahler manifold is totally
geodesic™, then

(1.16) ) DxHY=uMHX, b OyNHED=0,

9 Dy (N=-LOLM, O (Dy ) () =0.

2. Submanifold of Kahler Manifold

Theorem 2.1. The condition for the framed metric structure induced on the
submanifold of a Kahler manifold to be normal is

2.1 HX=HX+L(XU.
o o Ba x
PROOE. Let
Q.2 M(X,Y)=[f,f]+d§®lx/,

which is equivalent to

M XD =Dy f) ¥~ (D) X+ F (D) X~ (Dyf) ¥+ [(Dy ) (V) = Dy 1) X} U.

Substituting the equations (1.14) a) and (1.14) b) in this equation we get

MEXN=u(V)HX-HX-LX Ul-uX) (HY-HY
o X o o

o Be

-L(Y) Ul
Ba x
< . . *
1t the equation (2.1) holds, we have M (X, ) =0, ie-[ff1-du® U=0. Hence the
X
statement.

Theorem 2.2. If the induced framed metric structure on the submanifold of a Kahler
manifold is normal, then
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2.3) ) DeNT=-"HEXNU+u(MuHX)U,
o X o X
b (Dgi)(D=-"HX N+u(MHED-LD LD,

) PN¥=0zy (O U+L @ u®)U.
x Pa x
PROOF. Barring X and Y in equation (1.14a) and using equations (1.5d), (1.6), (1.11)
and (2.1), we get
2.4) — =
DzHY="HEX, D U.
o X

Now, using equations (1.5a), (1.6b) and (1.11) in this equation, we get the equation (2.3a).
Barring X in equation (1.14b), we get

@.5) Do (0 =~"HE D -LED u(M,

Using the equations (1.5a), (1.6a), (1.11) and (2.1) in equation (2.5), we have the equation
(2.3b). Comparing the equations (2.3a) and (2.3b), we get the equation (2.3¢).

Théorem 2.3. If the framed metric submanifold of a Kithler manifold is normal with
U as a killing vector, then
X

(2.6) a) HX=2HX, b) HX=2L(XU.
o o o Ba x
PROOF. From equations (1.15) and {2.1), we get the equations (2.6).

Theorem 2.4. Ifithe totally geodesic framed metric submanifold of a Kahler
manifold is normal, then

@n O HANU=iMiEDU, b OzdMU=-L®DiMU.

PROOF. Barring X and Y in equation (1.16a) and using equation (1.5d), we get
(Dg.h Y=0.Using this equation in equations (2.3a) and (2.3c), we get the equations (2.7).

3. Submanifold of Nearly Kihler Manifold

Theorem 3.1. The conditions that V, be a framed metric submanifold of a nearly
Kahier manifold V, are
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3.1) ) DPNY+DNX=uMHX+UHY-2'"HX DU,
o o o X

b) (Dy i) (1) + Dy i) () =="H (X, ="H XK. L0V (0= L0t (1),

PROOF. Let V be a nearly Kihler manifold, then in consequence of the equation
(1.4), we get

(3.2) (Egy F) BY + (Eg, F) BX = 0.

Substituting from the equations (1.19), (1.10), and (1.13) in equation (3.2) and separating
tangential and normal parts, we have the equation (3.1).

Theorem 3.2. Let V. be a framed metric submanifold of a nearly Kahler manifold
v, then we have

a) (Dy'H (Y, Z)+ DN X D=u(M)'HX 2D +uX)'H(Y.2)-2"HX, 2)u(2),
(3.3) o o o

b) (Dgi) N+ (Dyu) B ="H X, 1) +'H X, 1)~ u (1) (HX) ~ 1 (X) e (H ),

©) DzHY+D3NX=2fHX. U,
o x
@) (Dgu(+ Dy X)=7HX, 1)+ FHT,X,

e) FHXN+fHYL,)+uMuEH)+uXuHD)="HX N +'HXT).
o o o o [0 o
PROOF. From equation (3.1a), we have
SN YD)+ (DN X D=u(V)gHX, 2)+u(X) g HY, D~ 2'H(X. N g (U, D).
(3.4)
Using equations (1.7), (1.6b) and (1.11) in equation (2.11), we get the equation (3.3a).

Barring X and Y in equation (3.1b) and using equations (1.5a), (1.5d), (1.6b) and (1.11) in
the resulting equation, we have the equation (3.3b). the remaining part of the theorem
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follows similarly.

Theorem 3.3. If the induced Jramed metric structure on the submanifold of a nearly
Kdahler manifold is totally geodesic, then

(3.5) 2) Dy )) Y+(Dyj)X=i:(Y)I{X+1§(X)€Y,
b) (DX'J‘)(Y,Z)+(DY'I)(X,Z)=0,

0 (Pt Dy (==L NI X LX) k(1)

d) Dz (D + (D3 1) (%) =0.

PROOF. Using equation (1.12) in equation (3.1a), we get the equation (3.5a). From
equation (3.5a), we have

(6 g(DyNY.2)+ (D)) X,Z>=i‘é<Y>g<gx,Z>+Z(X>g<g Y, Z).

Using equations (1.7), (1.11) and (1.12) in equation (3.6), we get the equation (3.5b).
From equations (1.12) and (3.1b), we have the equation (3.5c). Barring X and Y in
equation (3.5c), we get the equation (3.5d).

Theorem 3.4. The condition that on the Jramed metric submanifold of a nearly
Kahler manifold, U is a killing vector is
X

HX-L(X)U=0, or b) HX+L(X)U=0,
3.7 Y o Ba(x) x o &) o Ba(x) x
PROOF. Using equations (1.6) and (1.11) in equation (3.1b), we get

B8 Dy +Dy 0 X)=g @f—ﬁLum g,X>+g<ﬁTX—BLa(X> U.m.

Now, if HX _(3L (X) U=0, then from equation (3.8), we have
o o X

(D 10) (V) + (D, 1) (X)=0, or (Dy t) (X) =0,

Hence we have equation (3.7a). Slrmlarly, from equations (1.6), (1.11) and (3.1b),
we have the equation (3.7b).
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Theorem 3.5. If U is a killing vector on a framed metric submanifold of a nearly
X

Kihler manifold, then

(3.9) a) (DXf)?+(D?j)X=ﬁ(X)H?+2L(X)ft(Y) U,
o Bex x
b) (Dzf) Y+ (DyH X =0,

) Dy i) (N + Dy (X) =51&<X)?é(Y>—ﬁLa(Y> U (X),

9 (D) (V) + (D ) () =0.

PROOF. Barring Y in equation (3.1a) and using equation (1.5d), we get
(3.10) DN Y+ DN X=uOHY-2’HE N U.
o ol X

Using equations (1.6), (1.11) and (3.7a) in equation (3.10), we get the equation (3.9a).
Barring X and Y in equation (3.9a) and using equation (1.5d) in the resulting equation, we
have the equation (3.9b). Using equations (1.6), (1.11) and (3.7) in equation (3.1b), we get
the equation (3.9c). Barring X and Y in equation (3.9¢) and using equation (1.5d), we get
the equation (3.94d).

References
1. R.S. Mishra, Structures on a differentiable manifold and their applications, Chandrama

Prakashan, Allahabad, 1984.

2. S.B. Pandey and Puran Singh, On general contact hypersurfaces of HGF - manifold, U. Sci.
Phyl. Sciences 5 (2) (1993) 142-147.

3. S.B. Pandey and Lata Dasila, Framed metric submanifold of a Kihler manifold, Proc. Math.
Soc. B.H.U. 10 (1994) 85-90.

4. K. Yano, Differential Geometry on Complex and almost Complex spaces, Pergamon Press,
New York, 1965.



