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Abstract. Amur and Desai . studied the projective transformation between Riemannian
spaces. Adati and Miyazawa® discussed such transformations between recurrent,
symmetric, projective recurrent and projective symmetric spaces in detail. Few results of
these authors were extended to recurrent Finsler spaces by Sinha and Faruqi 3 The aim of
the present paper is to extend the results of Adati and Miyazawa to Finsler spaces and to
generalize the results of Sinha and Farugi. The notation for Berwald’s covariant
differentiation differs from that of Rund* and Matsumoto®

1. Preliminaries

* x
Let F, be an n-dimensional Finsler space equipped with a metric function F

o ; o4 . . .
satisfying the required conditions , the corresponding symmetric metric tensor g and the
Berwald’s connection G. Let F, be another Finsler space with metric function F, metric

tensor g and the Berwald’s connection G such that fn is obtained by a projective
transformation of F , ie., the F, and the }—v'n are in geodesic correspondence. The

projective transformation is characterized by the relation of Berwald’s connection
coefficients of F, and F, such that

=i ‘ i i i
(1.1 Gy=Gy=p;8, =P, 5= p,. X,
where p;= 3,' p.py= 3k p; and 3,' =3/3 %. The function p (x, X) is arbitrary and positively
homogeneous of degree one in ici. Because of its homogeneity in x i, it satisties
i .k ks <
1.2 X pjk=x akpj—O.pjx -—p.‘

The covariant derivative of an arbitrary tensor T; for the connection G is given by

m rojm

j ] ! AR ) | m
13 asm7j=amzj—(arzﬂcm_‘,x +16,-1.6),0,=01"

N A

Berwald constructed the tensor H;.k and the curvature tensor H;'kh from deviation tensor H;.

* Unless Otherwise stated, all the geometric objects are supposed to be functions of the line-elements ( Y. 3. The
indices i, j, k - take positive integer values from 1 to .
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as follows:
(1.4) 2) Hy = (aH‘ -9 H’) b) Hy, =9, Hy,

The curvature tensor H;.kh, defined above, is skewsymmetric in last two lower indices k

and h and is positively homogeneous of degree zero in ii’s. The tensors H;k and H; satisfy
. 2 g Sk "

(1.5) a)H;.khx'=Ifkh b)H‘khx =H;I c)H;,x =0,

The projective curvature tensor W;:kh and the tensors W;k and W; satisfy the following:

(1.6) a)u/jik%(éjuf,;—ékuj) b)W; =, kah, c)W =W,

& Wy ¥ =W, e)W’;ij=O, DW=0, @ W, =-W,=0,
h) W,, = W W'

ikh = jih =
The projective curvature tensor ijh is skew- symmetric in last two lower indices

and is positively homogeneous of degree zero in x"s. A Finsler space is said to be of
scalar curvature if it is isotropic at each point

2. Two Lemmas

Let us assume that there exists a projective transformation from a non-flat Finsler
space F toa non-flat Finsler space F,. This means that the connection coefficients of F,

and F, are related by (1.1).

'The covariant derivative of the projective deviation tensor W; of 1—7" is given by
3 W.=d W.- (a u/)a $+WE -WG,

which, in view of (1.1) and the invariance of the projective deviation tensor WL under a
projective transformation, gives

@) 3, W,= (3,,, Wy (3r “’;}) G, ¥ + W, G~ W, Glm)"

: ] ] i N ]
+p(am u’;c)-}-2pm“/k—_smpr er(_prm VV,:x +pk ij'



On Projective Transformations Between Special Finsler Spaces 185
Using the formula (1.3) in (2.1), we have
= — i g j P o 7 - j
(2.2) B, Wk =38, Wk +po, Wk +2p, Wk - Slm p,We—p,, W;(x +p W,

Now we propose the following:

Lemma 2.1. If there exists a projective transformation from a non-flat Finsler space
F to another non-flat Finsler space 1_7”, then the invariance of the tensor B Wk implies
atleast one of the following

(i) the transformation is affine,

(ii) both the spaces are of scalar curvature.

Proof. If the tensor ’BmW;c is invariant under a projective transtormation, 1.e.

?Bm Wk =B, W;'c, the equation (2.2) reduces to

i
m

W ' 7 g .
2.3) patn“};(+2prn“}’k'_8 prwk—‘punuk'x +pk VVlm—

Transvecting (2.3) by i, and using the Euler's theorem for homogeneous functions and
the equation (1.2), we have

- P W
(2.4) pW,-i'p W, =0.

Transvecting (2.4) by p, and using p, i=i éi p=p wetindpp, W;= 0; which implies
atleast one of the following

2.5) a) p=0, b) p, W, =0.
If (2.5a) holds, the transformation is affine. If (2.5a) does not hold, we must have (2.5b).
Using (2.5b) in (2.4), we get p Wk=0; which implies W;=0. Since the space F, is

non-flat and the condition Wi= 0 implies that the space is of scalar curvature (Szab06;
Matsumoto7; Pandeys), the space F is of scalar curvature. In view of Matsumoto’s
theorem7, the space f’n is also of scalar curvat .. this completes the proof.

Lemma 2.2. If there exists a projective transformation from a non-flat F insler space
F_ to another non-flat Finsler space F, then the condition

2.6) B W,-3 W,=L W

m "k
where Lm is a covariant vector field, implies atleast one of the following:

(i) both the spaces are of scalar curvature,
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(i) the condition L = 4p holds.

Proof. Let us assume that there exists a projective transformation from a non-flat
Finsler space F, to another non-flat Finsler space F,and the condition (2.6) holds goed. In

view of (2.6), the equation (2.2) may be written as

o8 s s g )
(2.8 Lm Wk—[) am 1/‘k * 2pm W;t Z’mpr wk prm wk % +pk “m
Contracting the indices i and m in (2.8) and using (1.2), we have
, s S oud s
(2.9) Lr W.=p ar Wl’.' —-(n-2) p,W,.

Contracting the indices i and j in (1.6a) and using (1.6f) and (1.6g), we get 3,, V»i= 0.
Hence we may write (2.9) as

2.10) (;_Lr +(n-2) [)rj, w; =0,

Transvecting (2.8)by X" and using " 3’” W: 2= 2W2 and (1.2), we get

-m j -
2.11) (me _4p\)w‘;<=_xl)r‘vl:'
Transvecting (2.11) by p, and using p, jci =p, we have
.m _
(2.12) (Lm* - 3!’)1’,- W, =0.
The condition (2.12) implies atleast one of the following

(2.13) a) p,W,=0, b)L ¥ -3p=0.

We claim that (2.13a) holds good. If not, suppose p, Wl: # (. Then we must have (2.13b).
From (2.11) and (2.13b) we have

Q14 pW,=Xp W,
Transvecting (2.14) by L, we have

(2.15) p Lr ‘/V;( = L.s' \" p, Wi'
Multiplying (2.10) by p and using (2.15), we find

(2.16) Lr.‘r'+(n -2)p=0,
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since p,_ W; #0. Using (2.13b) in (2.16) we get (n + 1) p=0. Being the dimension of the
space, n can not be -1. Therefore we have p = 0; which implies b= Br p=0. This gives

p, Wk =0, a contradiction. Therefore, our supposition is wrong. Thus, we must have
(2.13a). In view of (2.13a), (2.11) reduces to (I, X" ~4 p) wj, = 0. This implies atleast
one of the following
@.17) W L i"=4p. b W.=0,
The conditicn (2.170) implies that the space F, and fn are of scalar curvature,

3. Projective Recurrent Spaces

In this section we discuss the projective transformation (1.1) from a projective
recurrent Finsler space F, to another projective recurrent Finsler space F characterized

.. 9
by the conditions

3.1 3m ‘Vj"kh = )\m u/jkh’ u,.'/'kh =0
and

W =3 W 7
(3.2) By Wan=2,, W;'kh’ Win 0

respectively. The covariant vectors km and Xm are said to be recurrence vectors. Projective
recurrent Finsler spaces are actually non-flat spaces because the vanishing of curvature
tensor implies the vanishing of W;kh and for a projective recurrent space WJ',kh¢O.

Transvecting (3.1) and (3.2) by x’ .ik and using (1.6¢) and (1.6d), we have
3.3) §mW’;1=Xm ﬁ-);'l’ W.h¢0
and
(3.4) i i

B W,=A W. W W #0.
Since the projective deviation tensor WJ,;_ is invariant with respect to a projective
transformation, .e., Wk = Wk we have
: BW—-8 W=(% _» \W
(3.5) 2;m Wk - Bm u/I\' - ( )"m }\'m) uk’

If the recurrence vectors are same, we have



188 P.N. Pandey and Reema Verma

ﬂm“’;‘—ﬂmW;‘=0,

i.e. the tensor B Wk is invariant. Hznce, in view of Lemma 2.1, we have atleast one of
the following
) Fn and Fn are of scalar curvature,

(ii) the transformation is affine.
Since I_"n and F, are projective recurrent spaces, the projective deviation tensors Wk

and W;( can not vanish identically. Therefore F, and 77” can not be of scalar curvature.
Hence the (ii) holds. This leads to:

Theorem 3.1. The projective transformation from a projective recurrent space F to

another projective recurrent space Fn with same recurrence vectors is necessarily affine.

If the recurrence vectors Xm and A are not equal, Le. Xm #A; suppose
A, —A,=L . Then we have B Wk -3, W;c =L, WJk Since W;(= W,lc #0,F and F are
not of scalar curvature. Therefore, in view of Lemma 2.2, we have L = 4p ie.
- m
(Km - A, |x- =4p. Thus, we have :

Theorem 3.2. If a projective recurrent Finsler space F, with recurrence vector ?»m

is transformed to a projective recurrent Finsler space fn with recurrence vector Xm by the

projective transformation (1.1), then we have (_Xm = lm)icm =4p,

4. Recurrent Spaces

This section is devoted to the study of the projective transformation (1.1) from a
recurrent Finsler space F), to another recurrent Finsler space F, characterized by

(4. 1) gm H_l]kh }Lm H_;kh’ Hl ¢ 0
and
4.2 3, E;kh m Hjlkh’ F #0

respectively. The covariant vectors )»m and Xm are recurrence vectors of Fn and Fn
respectively. It has been observed that the projective deviation tensor W;( of a recurrent

; . 9 . s
space is recurrent with same recurrence” vector. In view of this result, we find

4.3) a)B W;’ = Xm Wi , b) Eim Wh =x W

mh
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It has been proved by Pandey10 that a recurrent Finsler space of scalar curvature does not
exist. We also know that a Finsler space is of zero projective curvature if and only if it is
of scalar curvature . From these two theorems we may conclude that a recurrent Finsler
space can not have zero projective curvature, and hence zero projective deviation tensor,

Thus, W; #0 and Wk # 0. Proceeding in the similar way of proof of Theorems 3.1 and 3.2,
we may prove:

Theorem 4.1. The projective transformation from a recurrent Finsler space Fn to
another recurrent Finsler space fn With same recurrence vectors is necessarily affine.

Theorem 4.2. If a recurrent Finsler space F with recurrence vector Xm IS trans-
Jormed to a recurrent space Fn with recurrence vector }—\m by the projective
transformation (1.1), we have Xm - Xm &= 4pm.

5. Projective Symmetric Spaces

In this section we will study the projective transformation from a non-flat projective
symmetric space F, to another non- flat projective symmetric space F characterized by
5.1) 28, Wy,=0, 03, W, =0,
respectivelyu. Transvection of (5.1a) and (5.1b) by ¥ J'ck gives

(52) a) Bm W; =0, b) Em Wh =0,

which shows that E?m —W; = ﬂm Wh Therefore, in view of Lemma 2.1, we may conclude:

Theorem 5.1. If there exists a projective transformation from a non-flat projective
symmetric space F  to another non-flar projective symmetric space F,. then we have

atleast one of the following conditions:
(1) the transformation is affine,
(ii) both spaces F and F, are of scalar curvature.

6. Symmetric Spaces

Let us discuss the projective transformation from a non-flat symmetric space F 1o
another non-flat symmetric space f" characterized by

6.1) a) B, Hy =0, ©)B3 H,=0,

respectively. The projective deviation tensor W;, of a symmetric Finsler space is a

. 12 S o j . . . .
covariant constant . Hence we have ’Bm W;’ = Qim W;’ =0; which, in view of Lemma 2.1



190 P.N. Pandey and Reema Verma

implies atleast one of the following:
(i) the transformation is affine,
(i) both spaces are of scalar curvature,
. 10 - e a .
But according to Pandey  a symmietric Finsler space Fn {n>2) of scalar curvature is a

Riemannian space of constant Riemannian curvature provided it is non-flar. Hence we
conclude:

Theorem 6.1. Let two non-flat symmetric spaces F (n>12) and f (n>7 he
related by a projective transformation. Then we have atleasi one of the following:

(i) the transformation is affine,

(il) Finsler spaces F" and ;’7’" are Riemunnian spaces of constant Riewmannian
curvature,

7. Different Type of Spaces

In this section we discuss the projective transformation from a non-flat Finsler space
F, to another non-flat Finsler space F, such that

(1) F” is recurrent and f‘n is symmetric,

(i) Fn is projective recurrent and -17'” is projective symmeltric.

(ii1) Fn is projective recurrent and I?" is recurrent,

(iv) F" is recurrent and I—TH is projective symmelric.

(v) F is symmetric and f" is projective symmetric.

Case (i). Suppose the Finsler space F, is recurrent and F" is symmetric. Since the
projective deviation tensor W; is recurrent in a recurrent space and covariant constant in a
symmetric space, we have
(7.1) DB W=A W, b3 W=0,

A, being recurrence vector. Thus

2w /i /
a2 Bm ‘V;c - ng “k - ;\m uk'

In view of Lemma 2.2, we have atleast one of the following
(i) F, and F, both are of scalar curvature,

(i) -A, =4p ‘

m
10 . . .
Pandey ~ proved that a recurrent Finsler space of scalar curvature does not exist. In view
of this result (i) is not possible. Hence, we may conclude
Theorem 7.1. Let a recurrent Finsler space F, be related with a svmmetric Finsler
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space F,, by a projective transformation. Then the recurrence vector }\m satisfies
}\m =4 b m

Case (ii). Suppose F is projective recurrent and F , Projective symmetric. Then we

have B8 W. =2 W', and B W, =0. This means B W',— B W ==\ W, Therefore,
m k m k m k m ok m ok m k
in view of Lemma 2.2, we have atleast one of the followingy

(1) both spaces are of scalar curvature,

(1} - Xm = 419,"-

Buit for a projective recurrent space W;( # (. Thus condition (i) does not hold. Hence, we
may conclude:

Theorem 7.2. Let a projective recirrent space F, be reiated with a projective
syntefric Finsler space F, by a projective transformation. Then the recurrence vector
A, satisfies k =-~4p .

Case (jii). Suppose the Finsler space £ is projective recurrent and F, is recurrent,

Since the projective deviation tensor is recurrent in a projective recurrent space as well as
in a recurrent space we have

A o | P
a) B W=k W, W =0
b) Bm ‘V; - )\'m wk' uk #0,

where km and km are recurrence vectors. Thus

= W T Wooa w
(7.4) Bm wk g’m "V;( - ;\'m W} A’m uk’
since the projective deviation tensor is a invariant under a projective transformation i.e.,
We=We
BW-3 W=(% _ /
(1.5) Bm uk Bm Wk - ( )\'m }'m) Hk'

IfA, #X . inview of Lemma 2.2, we have aueast one of the following

(i) F,l and Fn both are of scalar curvature,

.o \ e — -

(i) )"m lm 4P m

But recurrent as well as projective recurrent spaces can not be of scalar curvature.
Therefore, we conclude:

Theorem 7.3. Let u projective recurrent Finsler space F, with recurrence vector
be transformed to a recurrent Finsler space F, with recurrence vector km by a projective
transformation. If A #X . we huveh, - A =4p

m m m m m
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If sz Xm. Then B, Wk— B, ui:o, Since a recurrent or a projective recurrent
Finsler space can not be of scalar curvature, we conclude that the transtormation is
necessarily affine. Hence we have :

Theorem 7.4. The projective transformation from a projective recurrent Finsler
space Fn to a recurrent Finsler space F with same recurrence vectors is necessarily

daffine.

Case (iv). Suppose F, is recurrent and F is projective symmetric. Since the
projective deviation tensor Wj, is recurrent in a recurrent space and it is a covariant

constant in a projective symmetric space, we have E?m Wk— B, WL:— km Wk Since a
recurrent space can not be of scalar curvature, the Lemma 2.2 leads to

Theorem 7.5. If a recurrent Finsler space F, with recurrence vector b =
transformed 10 a projective symmetric space _ﬁn by a projective transformation. the

recurrence vector sutisfies km = 4pm.
Case (v). In this case F is symmetric and £ is projective symmetric. Siice the

projective deviation tensor is covariant constant in both the spaces, _Z}m Wi, -8, W;( =0.In
view of Lemma 2.1, we have atleast one of the following

{i) the transformation is aftine,

(ii) both the spaces are of scalar curvature.

10 g v . . . ;
Pandey”  proved that a symmetric Finsler space of scalar curvature is a Riemannian
space of constant Riemannian curvature. In view of this result, we may conclude:

Theorem 7.6. If a symmetric Finsler space F is transformed to a projective

symmetric space 77” by a projective transformation, we have atleast one of the Sollowing

(i) the transformation is affine,
(i) F, is a Riemannian space of constant Riemannian curvature and F is of scalar
curvasure.
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