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Abstract. We study the pseudo-classical spinning particles in a spherically symmetric,
static, extenor field of a charged distnbution of mass described by the
Reissner-Nordstrom (RN) space-ime. We investigate the generahized equations for
spinning space and describe the constants of moton from their olutione. Considering the
motion in a plane we oblain exact solutions,

1. Introduction

The spinning point particles arce studied in psendo -classical mechanics which ??
been developed by supersymmetric extension of the spinless relativistic point particles .
The spin degrees of freedom are charactenized by anti-commuting Grassmann variables.
These variables do not admit any direct classical interpretation. The Lagrangian of these
models can be made to have a natural interpretation for the path-integral description of the
quantum dynamics. The pseudo-classical equations nt'lr_qglion attain physical meaning
when averaged over, inside the functional integral . The quantum mechanical
expectation values of the Grassmann variables for the spinning part‘ic}ff.lgan be obtained
by replacing some appropriate combination of them by real numbers ™’ .

The study of the geometry of graded pseudo-manifolds with real number and
Grassmann co-ordinates draws special attention. This generalized Riemannian geometry
based _%lnspin co-ordinates has a wide mathematical concern. Rietdijk and Van
Holten = invesugated the general relauons between symmetries of graded
pseudo-manifolds and mouon for spinming point  particles elaborately. The
anti-commuting Grassmann vanables modifies the Killing equations and thereby
generalize the Killing vectors. This generalization due to spin is explained by introducing
Killing scalars. The constants of motion for the spinping particle are constructed in this
respect.

In this paper we investigate the mouon of pseudo-classical point particle in the
space-ime geometry outside of a charged distnibution of mass described by the RN
metric. The RN metnc draws our attention because it 1s the only asymptotically flat,
stauc, sphenically symmetric solution of the coupled Einstein Maxwell equations.

We arrange this paper in the following way. In sec. 2 we summarize the equations
relevant to the mouon of spinning point particles in curved space-time. In sec. 3 we find
the vectors and Killing scalars corresponding to the RN metric. Applying the equations of
the previous section we derive the constants of mouon. In sec. 4 we consider the motion
In a plane and analyze the bound state solutions. The precession of the perihelion 1s also
obtained. In sec. S summarizing the results we draw our conclusions. We use the natural
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upitt b = ¢ = | fwroaghowt the paper
2 Motion in Spinning Space
The geodesic for spiaming space cam be obtained from the acton:

-l"

¢ 1 .m-9_ | “D‘P“}
— = )’ A - '\ "
(1) §= m’} d1 b !'ﬁ(‘t!l X 2 l'm‘{x M Dt

The constant m has the dimension of mass The overdot, here and m the r‘nllnwing.

denotes a derivative with respect to proper time dit The covariant derivative of Grass-

mann co-ordinates ¥ * is

DY¥" . u .a_n v
(2) D < =T ¢% 1, 7
With this action the space-time interval along the curve is
(3) 4:f.$‘z=gw“(,17)4::!1"5!,1'”:-«“2

where d 1 is the corrcspoPEing proper time interval. The last equality holds only in the
absence of external forces

The trajectories oblained by making the action stationary under variations vanishing
at the end points are

D%

_ ik -l-u_l_ oA i ¥
@) P xhar x"x ==V WIR, KT
Dv"
5 =
(3) D 0.
| T"F E"i‘f%‘}m‘mc tensor sH=oiwythy? describes the relativistic-spin of the
[a.ruc.lle_l g . Eqn. (4) implies the existence of a spin dependent gravitational
orce
D’ 1. m
(6) D 2 =-2-S eru‘tu
1
ps*
whereas the egn. (5) asserts that the spin is covariantly constant e =(0. The

space-like components 8 and the time-like components S of the spin Lensor respectively
refresent the particle’s magnetic dipole moment and the ¢lectric dipole moment. In the
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rest frame, the spin components § for physical fermions (leptons and quarks) should
vanish. We thus have the covariant constraint

() g, W S" it =0

which is equivalent to

(8) S x"w¥'=0
in Grassmann co-ordinates.

There are, 1n general, two classes of conserved quantities:
(1) The generic constants of motion which exist in any theory;

(i1) The non-generic kind which results from the specific form of the metric v ().

For spiaging-particle model defined by the action (1) we get four generic constants of

motion
. e s sm L.
1. The world-line Hamiltonian: H = o 8 (x) P, P,
2. The supercharge: Q = P, s
3. The dual supercharge: = % V-g il i v ¢°

- P s . RN o
4. The chiral charge: l“ﬂ_-‘fH L€ st ¥ v

The condition (10) implies that Q = 0.
3. Reissner-Nordstrom Spinning Space

Applying the results stated in the previous section we now study the motion of a
spinning particle in the geometry of a charged gravitating body. A simple exact solution
of such a geometry is the RN metric which has the form:

"' o 82\ 2 ( o 82\-1 2 2 2 2 2
9  ds=-|1- S+ Sl 1-24+ 5] dr e r @0 +sin 8d¢)
r r

\ ) \ )
where oo =2 GM and ¢ = qu with M the total mass and g the total charge of the body,

and G is Newton’s gravitational constant. The co-ordinate singularities of the metric due
[ 2)
e

o

to the distinct zeros r, r_, (r,>r_) of | 1 = ~+ 33 correspond to the event horizon and
r

Cauchy horizon, respectively. The RN metric has the four Killing vectors

(10) p® =g ©®H 0, 8=1,4

Il
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(). 0 e Q) 8 (3) (3) 5 . j_D“":_a_
where D = -—ﬁl_) , D _Lnsq:ae Lntesmtbaq), 30

These invariances correspond to conservation of energv and angular momentum for
bosons. For spinning particle, the sum of the orbital and the spin angular momentum 1is

S5 ()
conserved. The additional spin contribution is contained in the Killing scalars B~ (x, y)
defined by

(d)

& o8B o vt bl g (S)v
(]l) Bu + a\PU rl—‘-)»\y) :-2—\{}\{1 R?-.H'UHR \

: ) : . Y
Inserting the R (x) as given by (10), we obtain the corresponding Killing scalars:

/ 35
) | 2)
(12) g _ mj_‘fqu SIF‘B(JziBH}'
2F-~-2F d 0
)
(3) ro : . L3 1d :
B "=rcos¢S —r51n{JcmBs|n¢Sm+r sin Bsmchgo,

(4) - o 7 A 8
B- =rsini0S  ar SinBcosB S u'

i 5
The four conserved quantities J '° can now be found easily:

(1 [ 0 82\
=E=mil-=+=|t-B
r rz

\ )

7 (1)

(2) 2 LB R '
g =R )—mr (sm¢9+sunecosecos¢¢)

J’(

3) 3) 2 AR '
=BV m;y (COs ¢ 6 - sin B cos 8 sin ¢ ¢)

(13) I =89m0 6

Together with these there are four generic constants of motion as described in the

previous section. Further, the Covariantly gH as formulated in (5) yields

(ir‘PJ-!-i‘Pr)
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. {8 ' '
w9=—;(rw9+w‘)+smHWHM‘*’G’

(14) o

g : - T
—[;r+c0188 —-;dp‘i’ -cot o V¥
We thus get twelve equations altogether. Since the motion is geodesic we can consider

(13} B = m

or, equivalently

(16) gu“ PPy m2 =0,

Eqn. (15) allows us to write r in terms of the other velocities:

I 4 v} \ ]
[ = 1 E+ x e s.rl'
= i l
o cﬁ Mo i 2im e
1——+—2' L \ I
r
r
\ Y,
r 2 4Lt
(i & 82‘1 ) [ < 2\ 2( 2\' | 2
el i +'€2 ~r [1-=4+%[(6° +5in” 0 6]
r r r i
r r r
'\ y \ J \ J
17) 0=—=(-JPsino+7Dcosp-r5%
mr
4
o= sz—J“—LSN—-l-CDLB.S%
mr- sin“ @ 1y m
The combination
2% e R)iE, .
(18) r 51n9,5'9¢=1(2} schus¢+J( )s:n931n¢+1{4}cusﬁ

implies that there is only the spin angular momentum in the radial direction. From the
supersymmetric constraint Q = 0 we obtain,

( 28
aiie Tl 2 ‘ '
(19) -2+ S i e i P 0 4 sin? 0.6 W)
\ 5 1-E+%
deiie
u J
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This makes the chiral charge I", and the dual supercharge Q to vanish:
(20) r'=Q =0.

Expression (19) satisfies the first part of (14). The remaining three of (14) can be written
as

( 2
. _ : 3o 2e |: .90
S'ﬂ=—-1—rS'ﬁ+sinBcosquSm—rsinzB 1———2—‘+‘—2_ ¢S
r r
\ /
' (3 282\' 66
@) 5™ =cot0 ¢S Ltivcot08|s+r[1-22+-16S
r 2r
\ y

5%

The equation for

written in the form

(22)

_1
_r

q':'S’ﬂ—%és“*'—[z

g

r

E 1

[ =

Lm+2E

¢

r+cot® é)S%

is solved by (18). Using (19) the first part of (17) can be

£

2

r

—

}(és'ﬁ-»sinzws”*’) .

—

(0 4
r

The solutions of the equations of motion for the co-ordinates and spins are obtained
by integrating equations (17), (22) and the first two equations of (21).

4. Special Solutions

We here solve the equations given in the previous section for the motion in a plane

for which 0 = % With 0 = g and 0 = 0, the equations (17) and (22) become
1 PE 1 < ¢-
; € ; }
= 62\|_m+2E[a*r)¢S _
K
oy
\ Y,
1
. 2 _—
( 2 ( 2 2( 2\_22
r=||1-2+& | P-1-245 - 1-Z45 |0
r r r
r r r
£ J \ X ) -
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mr mr

(rsw)' = (),

The last and the third equations show that the orbital angular momentum and the spin’s
component perpendicular to the plane of motion are separately conserved:

(24) rswaz,mrzd;=j(4}-z‘sl,

where 2 and L are two constants. The first of (23), then, becomes

d E [a"é
(25) dt=7 L 2 + L LZ

a_ e M 2mEr
v 3

r

\ y
Eqn. (25) shows that the time-dilation has an additional contribution from spin-orbit
coupling and this dynamical component in the charged gravitational field is less compared

to that in charge-free field.

From equations (17), (18) and (23) we derive § ¢> = 0.
The motion for ¢ # 0 gives

(26) §=0 79395,

Then, also § ’9=0; that is, the spin is parallel to the orbital angular momentum. We
derive from (23) the equation for the orbit of the particle

( h

1 (dr p _LEZ - mz) r m ( 82 mr J
= e § o e + _

r2 dé L2 L r)\L ~ mr ]

(27)

Using the dimensionless variables

(28) € =£.x=
m

we obtain
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f-d]“
—
-

-
—
—
—
-

-
H

P |
—
¢

(X

2 . I :
£y =—(1+4) : : u'l (L) - | +°
do o |

(29) w (1)

~ e s IV <l some expectation
where 1 = : In order to analyze the possible motions Wt need to nssigl I
. .

.llm to A and consider A << 1,

Ve here study the bound state orbits of the spinning pot
asi-clliptic and circular orbits.

nt particle for which it B

1.

necessary that €~ < 1. The bound states correspond o qu
We tirst discuss the circular orbits, For circular orbits:

Sy =f (o) =0

(30)
l
‘ ‘ntut / + radius x_=— have,
and the energy € and the orbital angular momentum 1 tor the rac = u
respectively, the expressions
(
. : {2———'—1 | -2 u
31) gmzl—Pm “Ba ﬁa:r
{
\ /
provided, P > 0 where
2
e 2
P=2-3(l +A)ur+4(l +4) 5 U,
o
| 2 2 | 2
e ¢ -4
R=1-2(1+A){1-|3-2—u_ LN 2 5 1
o o | o
\ )
Equation (29) can now be put in the form
2 - ( 2 ) ( 2 l A
2y =(u—-u)(l1+4) -{—u:+ I —'?-—'—u u+ ;“ {'., " 55 |,
“ ‘ o o 2 of C 20+ u
\ / 1 )
(32)

The equation (32) provides a circular orbit ol rac

that starts at a certain aphelion distance and

determined by
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—
(33) IEE o \[‘ N ———

where
1 ; rl : l 1
E=(u-u) B=1-2=u, y=|=-Su - — |1y
i O , v
) o 2 o 2(I+A)lzui
\ )
Equation (33) has the solution
I i ( ‘,z 2\’% |
Wiug 29V [-—5+PE+YE i +2vE+B[y>0
o
-\ ) :
- |
(34) Fo=
o :}(1+1:'ﬁt.)1 )
|
- -y sin 5 v Y<0).
¢ 2
| 4==1+p

£ x

The radius of the stable circular orbit is minimum at the point of inflexion of the function
J (u). Supplementing equations (30) with the further equation /7 (1) = 0 and using (31) we
obtain

: 4
(35) X =31+ +9(1+8)Sx -8(1+4) =0
(X ¢

for the radius of the minimum stable circular orbit. The second kind orbit associated with
the minimum stable circular orbit 1s determined from

d ! 3 f 3 2 )
(36) [:I—“') =(1+A4)(u- ur)' 1-3 i—z* i, ~ 1—2 u
¢ o 0
\ )
which is
2
1‘
4(x -45)x
(37) x=x - — - -
( a0 s 2
(1+A)|x =4 | (0-0,) +4|x -3 [
0! 0.
\ ) \ )
We thus observe that in the spinning space the orbits of the energy of the particle are

modified.
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We now investigate the quasi-elliptic orbit. The orbit 18 described by

K
(38) X=7T1¢cos [6—w (D)

ici i < ¢ < 1. The funcuon
where K = £. k is the semilatus rectum and € the eccentricily with O

w (¢) accounts the precession of the perihelion due 1O relativistic effects. The perinelion

and aphelion are de scribed by

k (k)
(39) 4’3;""(4’?3}"““-4’5:;"*"(%]:(2“”“
The precession of the perihelion after one revolution is

(1) ©)_, M _,O_ Ad-2T.
(40) Aw-w(¢ph)_w(¢ph)_¢ph ¢ph in= ¢

The energy € at the perihelion | aphelion is given DY

2 1te ( eﬂl:te 2 1153 - Af_z_l e\
€ =1-( . }+ l2+——2- (—K—]Z_I (1+&)(T)+ (1+ )u.z X
41) 1 >

The constancy of € gives

I+

( 2.\
K\k-25
(42) 12=_—————r—‘r/af”z"—:7-
V- -8+ K-451+E)
oL
J

s

Using the above results and introducing x=0—W (¢), the equation of motion (27) can be
written in the form

——"
#

do= —
. y \JA(a-—bcosx+ccoszx)

where
K _1+4
A= t?2,.17- X
K—-'Z-—i
o
I 2) 4 4)
¢ e 2e
o1-3F3=Llk|k-35 #8528
el B
“ )
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(

b=DF.D=E-l-*

K |

=

2 1

2)
e
K_ﬁ-_i

c=NF, N=¢g —

Kl

Then, A ¢ as defined in (40) becomes

1 dx
M-mﬁ‘

(44)

With application of the expansion

(45)

and the integrals

2x

- x=2nT(n),

(46) J d x cos

-
(1-02=) T, T(n)=—;
n=0

169

C 2. 1
l=|=cosx~=ico8 X
(a a ’

2

2

2n-
d X COS

1x=0.

we derive from (44) an expression for A ¢ as a series in F from which we obtain

1 F

3—82

ey

2
Ap=2n(1-1)2{1+3n|1-2EE o4 “|(1+4)
L T 12 |
. 2
3 2 3 4-g" 2| 2 2
+=n|18|1-=1+ T | +& (1—31+212)
4 2 6
%) A2 1_72+932“‘:'::+eztz\
3 30 80
3 4 2 g ]
y=g' 1 (1-7) |[(1+A) +-)
16 _ |
where*t--Q—andT]—T

For A =0, the lowest-order contribution to the precession of the perihelion is given by the
second term in the expansion. The spin of a particle contributes to this lowest- order
precession which we find by keeping terms of first order in A,
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5. Concluding Remarks

1 , | e generali :
The usual Killing equations and Noether's theorem for particles are & ahized with

: L ..o gpace. The anti -
the spin degrees of freedom to study the moton in spinning space >ymmene

: " free thi
Grassmann variables characterize the spin degrees of freedom and by this model the
‘hed. Our results 10 this paper can be

pseudo-classical limit of the Dirac equation 1s describe | _ |
applied to the formal aspects of the motion of electrons Of pnss;ihlyﬁmaSSWﬁ ﬂﬂulﬂnqs (or
photinos, gravitinos, etc.) in the external gravitational field of a h@‘f’)’ ﬁphﬁfic§lly
symmetric charged object. Such formal aspects nclude the proof of spin-orbit coupling
and the corresponding fine splitting, resulting from dependence of the €ncrgy on the
values and relative orientation of the orbital and spin AHlAr SENCTIIE, ind i
the perihelion precession

predicts that in a charged gravitational feld the time-dilauon, tf 1 pre
for boundstate orbits, the circular orbits and the orbits of plunging the particle into the

Cauchy horizon are spin-dependent. The deflection of 2 particle 1n a charged grav%laﬂronal
field is also spin-dependent. Thus the Stern-Gerlach-type forces have the gravitational
analogue.

2

€ in RN metric can be ignored at large T, this metric

2
r

deserves attention as a simple example of an exact solution of the Einstein Maxwell’s
equations. Setting ¢=0 in the results obtained here Wwe get corresponding results of
Schwarzchild space-time. The motion of spinning particles in Schwarzchild metric was
described in [9] and our results with e = 0 agrees with them.

Although the charge term
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