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Abstract: “Protein sequences can be regarded as slightly edited 
random strings”1. We applied the methods of estimating residue 
correlation within the protein sequences. First we use the mutual 
information (MI) of adjacent residues, and improve the long range 
correlation between nonadjacent residues by defining the mutual 
information vector (MIV) of each protein sequence. The correlation is 
based on residue hydropathy rather than protein-specific interaction. Like 
this we calculated the MIV of each protein sequence, and these MIV are 
further give to recursive neural network to obtain the classification of 
protein sequence. The modeling power of MIV was shown to be 
significantly better, reaching the level where proteins can be classified 
without alignment information.
Keyword: protein folds classification, neural networks, mutual 
information in sequences.

1. Introduction

Protein fold recognition is the basis in protein structure discovery 
process, especially when traditional sequence comparison methods fail to 
yield convincing structural homologies. Although many methods have been 
developed for protein fold recognition, their accuracies remain low. Several 
pre-defined methods for protein fold recognition assumes that the number of 
protein folds in the universe is limited and therefore the protein folds 
recognition can be viewed as the fold classification problem, where a query
protein can be classified into one of the known folds. In this classification 
scheme one needs to identify fold-specific features, which can discriminate 
between different folds.
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A protein can be viewed as a string composed from the 20 symbol of 
amino acid alphabet or, alternatively, as the sum of their structural 
properties, for example, residues involved in forming alpha helix, beta sheets 
or participating in other secondary structure and residues involved in solvent 
accessibility such as buried/exposed residues. Protein sequences contain
sufficient information to construct secondary and tertiary protein structures. 
Most methods for predicting protein structure rely on primary sequence 
information by matching sequences representing unknown structures to those 
with known structures. Thus, researchers have investigated the correlation of 
amino acids within and across protein sequences 2-3. Despite all this, in terms 
of character strings, proteins can be regarded as slightly edited random 
strings1. Previous study has shown that residue correlation can provide 
biological insight, but that MI calculations for protein sequences require 
careful adjustment for sampling errors. An information-theoretic analysis of 
amino acid contact potential pairings with a treatment of sampling biases has 
shown that the amount of amino acid pairing information is small, but 
statistically significant 2. Another recent study by Martin et al. 3 showed that 
normalized mutual information can be used to search for coevolving 
residues. MIV has significantly better modeling power of proteins than MI, 
demonstrated in the protein sequence classification experiment 4. In the 
present work, we used the protein family information from Pfam 5. To model 
sequences, each protein sequence is associated to mutual information vector 
(MIV) where each entry of MIV represents the MI estimation for amino acid 
pairs separated by a particular distance in the primary structure. We studied 
two different properties of sequences: structural properties and solvent 
accessibility. The RNN 6-7, which is characterized by higher computing 
ability than the BP network, is applied to classify the protein data. 
Experimental results show that RNN significantly improves the accuracy and 
reliability of classification.

2. Material and Methods

2.2 Dataset
The dataset used in this study is the Ding and Dubchak dataset (D-B 

dataset), which is same as that used in earlier studies8,9. The D-B dataset 
contains 311 and 383 proteins for training and testing, respectively 
(http://cdr.lbl.gov~cding/protein). This dataset has been termed such that, in 
the training set, no two proteins have more  35% sequence identity to each 
other and each fold have seven, or more proteins; and in the test set, proteins 
have <40% identity to the proteins of the training set. According to SCOP 
classification10, the proteins used for training and testing belong to 27 
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different folds representing all major structural classes: all α, all β, α/β, α+β 
and small proteins.

2.2.1 Mutual information (MI) content
MI content is used to estimate correlation in protein sequences to gain 

insight into the prediction of secondary and tertiary structures. MI is a 
measure of correlation from information theory 11 based on entropy, which 
is a function of the probability distribution of residues. We can estimate 
entropy by counting residue frequencies. Entropy is maximal when all 
residues appear with the same frequency. MI is calculated by systematically 
extracting pairs of residues from a sequence and calculating the distribution 
of pair frequencies weighted by the frequencies of the residues composing 
the pairs. By defining a pair as adjacent residues in the protein sequence, MI 
estimates the correlation between the identities of adjacent residues. 

2.2.2 Mutual information
The entropy of a random variable X, H(X), represents the uncertainty of 

the value of X. H(X) is 0 when the identity of X is known, and H(X) is 
maximal when all possible values of X are equally likely. The mutual 
information of two variables MI(X, Y) represents the reduction in uncertainty 
of X given Y, and conversely, MI(Y, X) represents the reduction in 
uncertainty of Y given X:

(4) ( , ) ( ) ( | ) ( ) ( | )MI X Y H X H X Y H Y H Y X    .                                                      

When X and Y are independent, H(X | Y) simplifies to H(X), so MI(X, Y) is 
0. The upper bound of MI(X, Y) is the lesser of H(X) and H(Y), representing 
complete correlation between X and Y:

(5)     |   |  0H X Y H Y X  .                                                                                                 

We can measure the entropy of a protein sequence S as

(6) 2( ) ( ) log ( ),i i
i A

H S P x P x


                                                                                           

where ΣA is the alphabet of amino acid residues and P(xi) is the marginal 
probability of residue i. In Section 3.3, we discuss several methods for 
estimating this probability. From the entropy equations above, we derive the 
MI equation for a protein sequence X = (x1,……, xN):
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where the pair probability P(xi, xj) is the frequency of two residues being 
adjacent in the sequence.

2.2.3 Normalization by Joint Entropy
Since MI(X,Y) represents a reduction in H(X) or H(Y), the value of 

MI(X,Y) can be altered significantly by the entropy in X and Y. The MI score 
we calculate for a sequence is also affected by the entropy in that sequence. 
Martin et al. 3 propose a method of normalizing the MI score of a sequence 
using the joint entropy of a sequence. The joint entropy, or H(X, Y), can be 
defined as

(8)
2( , ) ( , ) log ( , ),i j i j

i A j A

H X Y P x x P x x
  

                                                                       

and is related to MI(X,Y) by the equation

(9) ( , ) ( ) ( ) ( , ).MI X Y H X H Y H X Y                                                                                    

The complete equation for our normalized MI measurement is

(10)
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2.2.5 Distance Mutual Information Vector (MIV)

Protein exists as a folded structure, allowing nonadjacent residues to 
interact. Furthermore, these interactions help to determine that structure. For 
this reason, we use MIV to characterize nonadjacent interactions. Our 
calculation of MI for adjacent pairs of residues is a specific case of a more 
general relationship, separation by exactly d residues in the sequence.

Definition 1: For a sequence S = (s1……..sN), mutual information of 
distance d, MI(d) is defined as

(11)
2

( , )
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P x x
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 
                                                                
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The pair probabilities, Pd(xi, xj), are calculated using all combinations of 
positions sm and sn in sequence S such that

(12) ( 1) , .m d n n N                                                                                            

A sequence of length N will contain N − (d + 1) pairs. 

Definition 2: The mutual information vector of length k for a sequence 
X, MIVk (X), is defined as a vector of k entries, {MI(0),…….., MI(k − 1)}.

2.2.6 Sequence alphabets

The alphabet chosen to represent the protein sequence has two effects on 
our calculations. First, by defining the alphabet, we also define the type of 
residue interactions we are measuring. By using the full amino acid alphabet, 
we are only able to find correlations based on residue-specific interactions. If 
we instead use an alphabet based on hydropathy, we make correlations based 
on hydrophilic/hydrophobic interactions. Second, altering the size of our 
alphabet has a significant effect on our MI calculations. In our study, we 
used three different alphabets: a set of 20 amino acids residues, ΣA, a 
secondary structure-based alphabet, ΣS, and a solvent accessibility-based ΣX, 
derived from grammar complexity and syntactic structure of protein 
sequences12 (see table 1 for mapping ΣA to ΣS and ΣX), an example of MIV’s 
calculated for single amino acid composition.

Table 1: Amino acid partition based on their secondary structure and solvent accessibility

Secondary structure based partition
Secondary structure Amino acids

Alpha helix R, E,Q,H,K
Beta strand C,I,M,F,W,Y,V,L
Random coil N,D,S,T,P,A,G

Solvent accessibility based partition
Buried C,I,M,F,W,Y,V,L
Exposed R,N,D,E,Q,H,K,S,T,P,A,G

2.3.1   Recursive Neural Network

The RNN is taken as a basic classifier6. This network type consists of an 
input layer, a hidden layer, and an output layer. In this way, it resembles a 
three layer feed-forward neural network. However, it also has a context 
layer, in which the neurons hold a copy of the output of the hidden neurons. 
The value of each context neuron is used one time step later as an extra input 
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signal for all the neurons in the hidden layer. The addition of interior 
feedback network increases the capability of processing dynamic 
information of the network itself, and therefore makes the system have the 
ability to adapt to time-varying characteristics. Suppose there are r inputs, m 
outputs and n neurons, respectively, in the hidden layer and in the context 
layer. u(k-1) represents the inputs of Elman network; x(k) represents the 
outputs of the hidden layer; xc(k) represents the outputs of the context layer, 
and y(k) represents the outputs of Elman network. Then, its nonlinear state-
space expression is 

(13)       
2

3 1
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


                                                                                  

where w1 is the weight from input layer to hidden layer, w2 from hidden 
layer to output layer and w3 from context layer to hidden layer. g represents 
the transfer function of the output layer, which is usually a linear function. f 
represents of the hidden layer, S type function is commonly used and can be 
defined as  

(14) 1( ) (1 )xf x e   .                                                                                                                    

Back propagation algorithm with momentum of variable learning rate is 
used here to modify the weight values and the error of the network is

(15) 2

1

( ) ,
m

i i
i

E t y


                                                                                                                 

in which ti (i=1, 2, … m) are the output vectors of the object.

2.3.2 Parameters Setting

We have taken d from 0 to 19, this gives us a 20 dimensional vector. 
Thus, the input neurons correspond to 20.  Eight neurons are used for the 
hidden layer. During the training process, the generalization error is 
estimated in each epoch on a validation set. If the error does not change in 
six consecutive epochs, the training of the network is terminated in order to 
avoid overfitting.

We use seven-fold cross-validation for training and evaluating the 
prediction performance, in which a data set is divided into seven subsets of 
approximately equal size. This means that the data is partitioned into training 
and test data in seven different ways. After training a classifier with a 
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collection of six subsets, the performance of the classifier is tested against 
the seventh subset. This process is repeated seven times so that every subset 
is once used as the test data. In the tests, it is run by seven times with intent 
to ensure the rationality of results, because Back Propagation algorithm over 
multilayer networks is only guaranteed to converge toward some local 
minimum and not necessarily to the global minimum error13.

3. Result and Discussion

Several experiments were conducted to evaluate the proposed method. 
The classification accuracy was measured by counting the sensitivity and 
specificity rates. In all K-class classification problems, each protein family Sk

(k = 1, . . .,K) was randomly partitioned into training and test sequences, with 
the training set being only a small percentage (5 - 10%) of the family dataset. 
The proposed method was evaluated using Five-fold cross validation on the 
D-B dataset of non-redundant protein chains. 

Performance is assessed using a variety of standard measures including 
correlation coefficients area under the ROC curves. Accuracy at 5% FPR 
(false Positive Rate), Precision [TP/(TP+FP)] and Recall [TP/(TP+FN)]. The 
accuracy at 5% FPR is defined as [(TP+TN)/ (TP+FP+TN+FN)] when the 
decision threshold is set so that 5% of negative cases are above the decision 
threshold. Here, TP, FP, TN and FN refer to the number of true positives, 
false positives, true negatives and false negatives respectively.

To evaluate classification performance ROC (Recursive Operating 
Characteristic) analysis was used. More specifically, we used the ROC50 

curve which is a plot of sensitivity as a function of false positive for various 
decision threshold values until 50 false positives are found. The area under 
the ROC curve in this method computed on all regions is 0.878, shown in 
figure 1. An area of 1.00 would correspond to a perfect predictor and an area 
of 0.50 would correspond to random predictor. The results of RNN over D-B 
training and testing datasets is described in table 2. We have also compared 
our results to those of other predictors. Table table 3 shows our results in 
comparison to other predictors.

Table 2: Results of RNN over D-B dataset

Dataset Correlation
coefficient

ROC area Accuracy Precision Recall

Training 
dataset

0.589 0.878 92.8% 75.4% 38.8%

Test dataset 0.255 0.789 94.5% 22.1% 25.9%
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Figure 1: ROC curve of RNN on the set of 723 protein chains

Table 3:  Comparison of RNN with all other machine learning algorithms 

Machine learning algorithms Accuracy (%)
ΣA ΣS ΣX

Least Hamming distance 14 85.22 79.23 87.2
Least Euclidean distance 15 84.56 82 94
ProtLock 16 79.43 83.6 91
Covariant-discriminant 17 79.82 88.74 95.82
Augmented covariant discriminant 18 88.53 87 88.6
Support vector machines 66.1 80.7 86.85
SLLEc & KNN 72.67 88.43 92.67
Recursive Neural Networks 89.3 90.8 93.3
Fuzzy KNN 73.69 85.61 88.92
Support vector machines 81.98 78.12 86.27
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5. Conclusion

The advantages in using the representation of MIVs to classify the 
protein folds are: (1) allowing us to use a discrete model to deal with a 
problem involving many sequences with extreme variation in length; (2) able 
to incorporate a considerable amount of sequence order effects that are 
hidden in long and complicated protein sequences; and (3) providing a 
flexible mathematical frame to invite various novel approaches. The current 
Elman RNN approach is just one of them. Nevertheless, as demonstrated by 
the overall success rates, it is a quite promising one. Furthermore, it is 
intriguing to note that the Elman RNN approach as introduced here may also 
have a positive impact in improving the prediction quality for protein 
classifications.
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Abstract: “Protein sequences can be regarded as slightly edited random strings”1. We applied the methods of estimating residue correlation within the protein sequences. First we use the mutual information (MI) of adjacent residues, and improve the long range correlation between nonadjacent residues by defining the mutual information vector (MIV) of each protein sequence. The correlation is based on residue hydropathy rather than protein-specific interaction. Like this we calculated the MIV of each protein sequence, and these MIV are further give to recursive neural network to obtain the classification of protein sequence. The modeling power of MIV was shown to be significantly better, reaching the level where proteins can be classified without alignment information.

Keyword: protein folds classification, neural networks, mutual information in sequences.

1. Introduction

Protein fold recognition is the basis in protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. Several pre-defined methods for protein fold recognition assumes that the number of protein folds in the universe is limited and therefore the protein folds recognition can be viewed as the fold classification problem, where a query protein can be classified into one of the known folds. In this classification scheme one needs to identify fold-specific features, which can discriminate between different folds.


A protein can be viewed as a string composed from the 20 symbol of amino acid alphabet or, alternatively, as the sum of their structural properties, for example, residues involved in forming alpha helix, beta sheets or participating in other secondary structure and residues involved in solvent accessibility such as buried/exposed residues. Protein sequences contain sufficient information to construct secondary and tertiary protein structures. Most methods for predicting protein structure rely on primary sequence information by matching sequences representing unknown structures to those with known structures. Thus, researchers have investigated the correlation of amino acids within and across protein sequences 2-3. Despite all this, in terms of character strings, proteins can be regarded as slightly edited random strings1. Previous study has shown that residue correlation can provide biological insight, but that MI calculations for protein sequences require careful adjustment for sampling errors. An information-theoretic analysis of amino acid contact potential pairings with a treatment of sampling biases has shown that the amount of amino acid pairing information is small, but statistically significant 2. Another recent study by Martin et al. 3 showed that normalized mutual information can be used to search for coevolving residues. MIV has significantly better modeling power of proteins than MI, demonstrated in the protein sequence classification experiment 4. In the present work, we used the protein family information from Pfam 5. To model sequences, each protein sequence is associated to mutual information vector (MIV) where each entry of MIV represents the MI estimation for amino acid pairs separated by a particular distance in the primary structure. We studied two different properties of sequences: structural properties and solvent accessibility. The RNN 6-7, which is characterized by higher computing ability than the BP network, is applied to classify the protein data. Experimental results show that RNN significantly improves the accuracy and reliability of classification.


2. Material and Methods

2.2 Dataset


The dataset used in this study is the Ding and Dubchak dataset (D-B dataset), which is same as that used in earlier studies8,9. The D-B dataset contains 311 and 383 proteins for training and testing, respectively (http://cdr.lbl.gov~cding/protein). This dataset has been termed such that, in the training set, no two proteins have more  35% sequence identity to each other and each fold have seven, or more proteins; and in the test set, proteins have <40% identity to the proteins of the training set. According to SCOP classification10, the proteins used for training and testing belong to 27 different folds representing all major structural classes: all α, all β, α/β, α+β and small proteins.


2.2.1 Mutual information (MI) content

MI content is used to estimate correlation in protein sequences to gain insight into the prediction of secondary and tertiary structures. MI is a measure of correlation from information theory 11  based on entropy, which is a function of the probability distribution of residues. We can estimate entropy by counting residue frequencies. Entropy is maximal when all residues appear with the same frequency. MI is calculated by systematically extracting pairs of residues from a sequence and calculating the distribution of pair frequencies weighted by the frequencies of the residues composing the pairs. By defining a pair as adjacent residues in the protein sequence, MI estimates the correlation between the identities of adjacent residues. 


2.2.2 Mutual information


The entropy of a random variable X, H(X), represents the uncertainty of the value of X. H(X) is 0 when the identity of X is known, and H(X) is maximal when all possible values of X are equally likely. The mutual information of two variables MI(X, Y) represents the reduction in uncertainty of X given Y, and conversely, MI(Y, X) represents the reduction in uncertainty of Y given X:


(4)
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When X and Y are independent, H(X | Y) simplifies to H(X), so MI(X, Y) is 0. The upper bound of MI(X, Y) is the lesser of H(X) and H(Y), representing complete correlation between X and Y:


(5)
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We can measure the entropy of a protein sequence S as


(6)
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where ΣA is the alphabet of amino acid residues and P(xi) is the marginal probability of residue i. In Section 3.3, we discuss several methods for estimating this probability. From the entropy equations above, we derive the MI equation for a protein sequence X = (x1,……, xN):


(7)
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where the pair probability P(xi, xj) is the frequency of two residues being adjacent in the sequence.

2.2.3 Normalization by Joint Entropy

Since MI(X,Y) represents a reduction in H(X) or H(Y), the value of MI(X,Y) can be altered significantly by the entropy in X and Y. The MI score we calculate for a sequence is also affected by the entropy in that sequence. Martin et al. 3 propose a method of normalizing the MI score of a sequence using the joint entropy of a sequence. The joint entropy, or H(X, Y), can be defined as


 (8)
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and is related to MI(X,Y) by the equation


 (9)
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The complete equation for our normalized MI measurement is


(10)


[image: image7.wmf](


)


2


2


(,)log(,)/()()


(,)


.


(,)(,)log(,)


ijijij


iAjA


ijij


iAjA


PxxPxxPxPx


MIXY


HXYPxxPxx


ÎÎ


åå


ÎÎ


åå


=-


åå


åå


                                       


2.2.5 Distance Mutual Information Vector (MIV)

Protein exists as a folded structure, allowing nonadjacent residues to interact. Furthermore, these interactions help to determine that structure. For this reason, we use MIV to characterize nonadjacent interactions. Our calculation of MI for adjacent pairs of residues is a specific case of a more general relationship, separation by exactly d residues in the sequence.

Definition 1: For a sequence S = (s1……..sN), mutual information of distance d, MI(d) is defined as


(11)
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The pair probabilities, Pd(xi, xj), are calculated using all combinations of positions sm and sn in sequence S such that


(12)
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A sequence of length N will contain N − (d + 1) pairs. 


Definition 2: The mutual information vector of length k for a sequence X, MIVk (X), is defined as a vector of k entries, {MI(0),…….., MI(k − 1)}.


2.2.6 Sequence alphabets

The alphabet chosen to represent the protein sequence has two effects on our calculations. First, by defining the alphabet, we also define the type of residue interactions we are measuring. By using the full amino acid alphabet, we are only able to find correlations based on residue-specific interactions. If we instead use an alphabet based on hydropathy, we make correlations based on hydrophilic/hydrophobic interactions. Second, altering the size of our alphabet has a significant effect on our MI calculations. In our study, we used three different alphabets: a set of 20 amino acids residues, ΣA, a secondary structure-based alphabet, ΣS, and a solvent accessibility-based ΣX, derived from grammar complexity and syntactic structure of protein sequences12 (see table 1 for mapping ΣA to ΣS and  ΣX), an example of MIV’s calculated for single amino acid composition.


Table 1:  Amino acid partition based on their secondary structure and solvent accessibility

		Secondary structure based partition



		Secondary structure

		Amino acids



		Alpha helix

		R, E,Q,H,K



		Beta strand

		C,I,M,F,W,Y,V,L



		Random coil

		N,D,S,T,P,A,G



		Solvent accessibility based partition



		Buried 

		C,I,M,F,W,Y,V,L



		Exposed

		R,N,D,E,Q,H,K,S,T,P,A,G





2.3.1   Recursive Neural Network

 The RNN is taken as a basic classifier6. This network type consists of an input layer, a hidden layer, and an output layer. In this way, it resembles a three layer feed-forward neural network. However, it also has a context layer, in which the neurons hold a copy of the output of the hidden neurons. The value of each context neuron is used one time step later as an extra input signal for all the neurons in the hidden layer. The addition of interior feedback network increases the capability of processing dynamic information of the network itself, and therefore makes the system have the ability to adapt to time-varying characteristics. Suppose there are r inputs, m outputs and n neurons, respectively, in the hidden layer and in the context layer. u(k-1) represents the inputs of Elman network; x(k) represents the outputs of the hidden layer; xc(k) represents the outputs of the context layer, and y(k) represents the outputs of Elman network. Then, its nonlinear state-space expression is 


 (13)       
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where w1 is the weight from input layer to hidden layer, w2 from hidden layer to output layer and w3 from context layer to hidden layer. g represents the transfer function of the output layer, which is usually a linear function. f represents of the hidden layer, S type function is commonly used and can be defined as  


(14)
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 Back propagation algorithm with momentum of variable learning rate is used here to modify the weight values and the error of the network is


(15)
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in which ti (i=1, 2, … m) are the output vectors of the object.

2.3.2 Parameters Setting

We have taken d from 0 to 19, this gives us a 20 dimensional vector. Thus, the input neurons correspond to 20.  Eight neurons are used for the hidden layer. During the training process, the generalization error is estimated in each epoch on a validation set. If the error does not change in six consecutive epochs, the training of the network is terminated in order to avoid overfitting.


We use seven-fold cross-validation for training and evaluating the prediction performance, in which a data set is divided into seven subsets of approximately equal size. This means that the data is partitioned into training and test data in seven different ways. After training a classifier with a collection of six subsets, the performance of the classifier is tested against the seventh subset. This process is repeated seven times so that every subset is once used as the test data. In the tests, it is run by seven times with intent to ensure the rationality of results, because Back Propagation algorithm over multilayer networks is only guaranteed to converge toward some local minimum and not necessarily to the global minimum error13.

3. Result and Discussion

Several experiments were conducted to evaluate the proposed method. The classification accuracy was measured by counting the sensitivity and specificity rates. In all K-class classification problems, each protein family Sk (k = 1, . . .,K) was randomly partitioned into training and test sequences, with the training set being only a small percentage (5 - 10%) of the family dataset. The proposed method was evaluated using Five-fold cross validation on the D-B dataset of non-redundant protein chains. 

Performance is assessed using a variety of standard measures including correlation coefficients area under the ROC curves. Accuracy at 5% FPR (false Positive Rate), Precision [TP/(TP+FP)] and Recall [TP/(TP+FN)]. The accuracy at 5% FPR is defined as [(TP+TN)/ (TP+FP+TN+FN)] when the decision threshold is set so that 5% of negative cases are above the decision threshold. Here, TP, FP, TN and FN refer to the number of true positives, false positives, true negatives and false negatives respectively.

To evaluate classification performance ROC (Recursive Operating Characteristic) analysis was used. More specifically, we used the ROC50 curve which is a plot of sensitivity as a function of false positive for various decision threshold values until 50 false positives are found. The area under the ROC curve in this method computed on all regions is 0.878, shown in figure 1. An area of 1.00 would correspond to a perfect predictor and an area of 0.50 would correspond to random predictor. The results of RNN over D-B training and testing datasets is described in table 2. We have also compared our results to those of other predictors. Table table 3 shows our results in comparison to other predictors.

Table 2: Results of RNN over D-B dataset

		Dataset

		Correlation coefficient

		ROC area

		Accuracy

		Precision

		Recall



		Training dataset

		0.589

		0.878

		92.8%

		75.4%

		38.8%



		Test dataset

		0.255

		0.789

		94.5%

		22.1%

		25.9%
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Figure 1: ROC curve of RNN on the set of 723 protein chains

Table 3:  Comparison of RNN with all other machine learning algorithms 


		Machine learning algorithms

		Accuracy (%)



		

		ΣA

		ΣS

		ΣX



		Least Hamming distance 14

		85.22

		79.23

		87.2



		Least Euclidean distance 15

		84.56

		82

		94



		ProtLock 16

		79.43

		83.6

		91



		Covariant-discriminant 17

		79.82

		88.74

		95.82



		Augmented covariant discriminant 18

		88.53

		87

		88.6



		Support vector machines 

		66.1

		80.7

		86.85



		SLLEc & KNN 

		72.67

		88.43

		92.67



		Recursive Neural Networks

		89.3

		90.8

		93.3



		Fuzzy KNN

		73.69

		85.61

		88.92



		Support vector machines 

		81.98

		78.12

		86.27





5. Conclusion

The advantages in using the representation of MIVs to classify the protein folds are: (1) allowing us to use a discrete model to deal with a problem involving many sequences with extreme variation in length; (2) able to incorporate a considerable amount of sequence order effects that are hidden in long and complicated protein sequences; and (3) providing a flexible mathematical frame to invite various novel approaches. The current Elman RNN approach is just one of them. Nevertheless, as demonstrated by the overall success rates, it is a quite promising one. Furthermore, it is intriguing to note that the Elman RNN approach as introduced here may also have a positive impact in improving the prediction quality for protein classifications.
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