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Abstract: Antifreeze proteins (AFP) prevent the growth of ice-crystal in 
order to enable certain organism to survive under sub-zero temperature 
surroundings. These AFPs have evolved from different types of proteins 
and having very different sequences and structure. But they all perform 
the same function and become the classical example of convergent 
evolution. Inspired by the success of machine learning algorithms we 
used ANN for their prediction. A feature vector was prepared using 
different physicochemical property groups of amino acids, amino acid 
composition and dipeptide composition. Though our AFP dataset was 
small, the ANN is able to correctly classify the AFPs and non-AFPs. A 
larger dataset, incorporation of structural information and better selection 
of amino acid physicochemical properties for making the feature vectors 
will further validate better accuracy in prediction of AFPs using ANN.
Keywords: Antifreeze Proteins, Artificial Neural Networks, 
physicochemical property groups, amino acid composition, and dipeptide 
composition

1. Introduction

Antifreeze proteins or the ice structuring proteins or thermal hysteresis 
proteins are a diverse group of proteins which inhibit the growth of ice 
crystals1. These proteins have evolved as an adaptation to cold temperatures 
and are found in different organisms like fish, insect, bacteria, fungi and 
plants2. Antifreeze proteins results in non-colligative (i.e. lowering of 
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freezing point is not in proportion to its concentration), non-equilibrium 
lowering of the freezing point of the extracellular fluids to safe level3. Based 
on their origins and properties, fish AFPs have been classified into five 
distinct types –AFGP, Type I, Type II, Type III and Type IV, each of them 
are unrelated and possesses distinct characteristics both in structure and 
sequence composition , although all of them perform the same function of 
antifreeze activity. These proteins were first discovered by De Varies in the 
blood plasma of marine teleosts. AFPs play an important role in protecting 
the fishes from freezing in ice-laden sea water4. During geologically recent 
cooling and glaciations events, there might be intense selective pressure to 
avoid freezing under progressively cooler conditions. These environmental 
changes must have favored any means of lowering the freezing point to 
avoid any physiological changes and that a number of different proteins have 
adapted to the task of antifreeze .The surprising diversity and distribution of 
the AFPs has led to the hypothesis that they have each evolved recently and 
independently as an adaptation to cooling during freezing of Antarctic 
oceans about 10-30 million years ago and Arctic oceans about 1-2 million 
years ago5

.

Figure 1: Types of antifreeze proteins6
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2. Background

AFPs are a remarkable example of parallel and convergent evolution. A 
series of different proteins have independently evolved a common function 
(ice binding) despite having no amino acid or sequence similarity among 
them. There is an absence of a consensus ice binding motif which has made 
a PCR based study of these proteins impossible [7]. AFPs have potential 
industrial, medical, biotechnological and agricultural application in different 
fields, such as food technology, preservation of cell lines, organs, 
cryosurgery and freeze-resistant transgenic plants and animals. A popular 
similarity search program such as BLAST [8] fails to detect putative 
antifreeze proteins. Inspired by the success of machine learning algorithms 
we used ANN for their prediction.

3. Method

A. Dataset
The dataset of Kandaswamy et al6 is used for our experiment. The data 

set contains 481 Antifreeze Proteins and 481 non-Antifreeze Proteins. All 
these AFPs were having less than 40% sequence identity with each other.

The training set was created with 674 proteins .The validation and the 
testing set consists of 144 proteins each. All the three dataset consist equal 
number of both antifreeze and non-antifreeze proteins. 

B. Selection of Features Vectors

The success of any prediction method depends on the quality of the input 
data. The quality is related to extraction of the relevant features from the 
input data. Here we had taken three features from the protein sequences to 
create input feature vector. The three features are amino acid composition, 
residues property groups and dipeptide counts. So each sequence is encoded 
by 431 input features as listed below:

Table 1: Selected Features

Name of the Feature Size
Different Residues 20
Residues Property Groups 11
Dipeptide counts 400
Total 431

We have considered 11 property groups in generating the input feature 
vector. The following table provides the details regarding the property 
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groups in which an amino acid belongs. Some of the amino acids fall in 
more than one property group6

.

Table 2. Residue Property Groups

C. Classification protocol
Artificial neural networks have been applied successfully for 

classification and prediction in biological data. We used scaled conjugate 
gradient Back-error-propagation algorithm [10] for our prediction and used 
70% of our data for training and 15% of the data for validation and the 
remaining 15% for testing.

D. Evaluation parameter

The performance of artificial neural network prediction method used in 
our study was computed by using sensitivity, specificity, overall accuracy,
using the following equations. These measurements are expressed in terms 
of true positive (TP), false negative (FN), true negative (TN) and false 
positive (FP).

Sensitivity: This parameter allows computation of the percentage of 
correctly predicted antifreeze proteins 

                                        .

Specificity: This parameter allows computation of the percentage of 
correctly predicted non-antifreeze proteins

Residue Group Residues in the Specific Group
Tiny amino Residues Ala, Cys, Gly, Ser, Thr
Small Residues Ala, Cys, Asp, Gly, Asn, Pro, Ser, Thr and Val
Aliphatic Residues Ile, Leu and Val.

Non-polar Residues Ala, Cys, Phe, Gly, Ile, Leu, Met, Pro, Val, Trp and Tyr

Aromatic Residues Phe, His, Trp and Tyr
Polar Residues Asp, Glu, His, Lys, Asn, Gln. Arg, Ser, and Thr.
Charged Residues Asp, Glu, His, Arg, Lys
Basic Residues His, Lys and Arg
Acidic Residues Asp and Glu
Hydrophobic Residues Ala, Cys, Phe, Ile, Leu, Met, Val, Trp, Tyr
Hydrophilic Residues Asp, Glu, Lys, Asn, Gln
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                                         .

Accuracy: Percentage of correctly predicted antifreeze and non-antifreeze 
proteins

                                      .

4. Results and Discussion

Experiment was conducted by training the neural network using scaled 
conjugate gradient backpropogation algorithm with 674 samples and 
validating with 144 samples. The testing with 144 samples, we achieved an 
overall accuracy of 85.4%, sensitivity of 86.9% and specificity of 85%.

We have also investigated the performance of our prediction method by 
plotting Receiver Operating Characteristic (ROC) curves derived from the 
sensitivity and specificity values.

Fig.2.Training Parameters

Fig.3.Confusion Matrix
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Fig.4. ROC curves

The confusion matrices and the ROC curve obtained during the training, 
validating, and testing are shown in the figure 3 and figure 4

5. Conclusion

We have got enhanced accuracy using three input features namely amino 
acid composition, 11 residues property groups and dipeptide counts. This 
accuracy can further be enhanced by using a larger dataset, incorporation of 
structural information (which is presently limited due to paucity of AFP 
structures) and better selection of physicochemical properties of amino acids 
for making the feature vector in predicting AFPs. We will further explore the 
possibilities of application of various feature selection techniques to reduce 
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the dimensionality of the feature vectors to avoid over-fitting data, which we 
believe will improve the classification accuracy.
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1. Introduction

Antifreeze proteins or the ice structuring proteins or thermal hysteresis proteins are a diverse group of proteins which inhibit the growth of ice crystals1. These proteins have evolved as an adaptation to cold temperatures and are found in different organisms like fish, insect, bacteria, fungi and plants2. Antifreeze proteins results in non-colligative (i.e. lowering of freezing point is not in proportion to its concentration), non-equilibrium lowering of the freezing point of the extracellular fluids to safe level3. Based on their origins and properties, fish AFPs have been classified into five distinct types –AFGP, Type I, Type II, Type III and Type IV, each of them are unrelated and possesses distinct characteristics both in structure and sequence composition , although all of them perform the same function of antifreeze activity. These proteins were first discovered by De Varies in the blood plasma of marine teleosts. AFPs play an important role in protecting the fishes from freezing in ice-laden sea water4. During geologically recent cooling and glaciations events, there might be intense selective pressure to avoid freezing under progressively cooler conditions. These environmental changes must have favored any means of lowering the freezing point to avoid any physiological changes and that a number of different proteins have adapted to the task of antifreeze .The surprising diversity and distribution of the AFPs has led to the hypothesis that they have each evolved recently and independently as an adaptation to cooling during freezing of Antarctic oceans about 10-30 million years ago and Arctic oceans about 1-2 million years ago5.
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Figure 1: Types of antifreeze proteins6

2.  Background

AFPs are a remarkable example of parallel and convergent evolution. A series of different proteins have independently evolved a common function (ice binding) despite having no amino acid or sequence similarity among them. There is an absence of a consensus ice binding motif which has made a PCR based study of these proteins impossible [7]. AFPs have potential industrial, medical, biotechnological and agricultural application in different fields, such as food technology, preservation of cell lines, organs, cryosurgery and freeze-resistant transgenic plants and animals. A popular similarity search program such as BLAST [8] fails to detect putative antifreeze proteins. Inspired by the success of machine learning algorithms we used ANN for their prediction.

3.  Method


A. Dataset


The dataset of Kandaswamy et al6 is used for our experiment. The data set contains 481 Antifreeze Proteins and 481 non-Antifreeze Proteins. All these AFPs were having less than 40% sequence identity with each other.


The training set was created with 674 proteins .The validation and the testing set consists of 144 proteins each. All the three dataset consist equal number of both antifreeze and non-antifreeze proteins. 


B. Selection of Features Vectors


The success of any prediction method depends on the quality of the input data. The quality is related to extraction of the relevant features from the input data. Here we had taken three features from the protein sequences to create input feature vector. The three features are amino acid composition, residues property groups and dipeptide counts. So each sequence is encoded by 431 input features as listed below:


Table 1: Selected Features


		Name of the Feature

		Size



		Different Residues

		20



		Residues Property Groups

		11



		Dipeptide counts

		400



		Total

		431





We have considered 11 property groups in generating the input feature vector. The following table provides the details regarding the property groups in which an amino acid belongs. Some of the amino acids fall in more than one property group6.

Table 2. Residue Property Groups

		Residue Group

		Residues in the Specific Group



		Tiny amino Residues

		Ala, Cys, Gly, Ser, Thr



		Small Residues

		Ala, Cys, Asp, Gly, Asn, Pro, Ser, Thr and Val



		Aliphatic Residues

		Ile, Leu and Val.



		Non-polar Residues

		Ala, Cys, Phe, Gly, Ile, Leu, Met, Pro, Val, Trp and Tyr



		Aromatic Residues

		Phe, His, Trp and Tyr



		Polar Residues

		Asp, Glu, His, Lys, Asn, Gln. Arg, Ser, and Thr.



		Charged Residues

		Asp, Glu, His, Arg, Lys



		Basic Residues

		His, Lys and Arg



		Acidic Residues

		Asp and Glu



		Hydrophobic Residues

		Ala, Cys, Phe, Ile, Leu, Met, Val, Trp, Tyr



		Hydrophilic Residues

		Asp, Glu, Lys, Asn, Gln





C. Classification protocol


Artificial neural networks have been applied successfully for classification and prediction in biological data. We used scaled conjugate gradient Back-error-propagation algorithm [10] for our prediction and used 70% of our data for training and 15% of the data for validation and the remaining 15% for testing.

D. Evaluation parameter

The performance of artificial neural network prediction method used in our study was computed by using sensitivity, specificity, overall accuracy, using the following equations. These measurements are expressed in terms of true positive (TP), false negative (FN), true negative (TN) and false positive (FP).

Sensitivity: This parameter allows computation of the percentage of correctly predicted antifreeze proteins 
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Specificity: This parameter allows computation of the percentage of correctly predicted non-antifreeze proteins
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Accuracy: Percentage of correctly predicted antifreeze and non-antifreeze proteins
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4. Results and Discussion


Experiment was conducted by training the neural network using scaled conjugate gradient backpropogation algorithm with 674 samples and validating with 144 samples. The testing with 144 samples, we achieved an overall accuracy of 85.4%, sensitivity of 86.9% and specificity of 85%.


We have also investigated the performance of our prediction method by plotting Receiver Operating Characteristic (ROC) curves derived from the sensitivity and specificity values.
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Fig.2.Training Parameters
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Fig.3.Confusion Matrix
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Fig.4. ROC curves


The confusion matrices and the ROC curve obtained during the training, validating, and testing are shown in the figure 3 and figure 4

5. Conclusion

We have got enhanced accuracy using three input features namely amino acid composition, 11 residues property groups and dipeptide counts. This accuracy can further be enhanced by using a larger dataset, incorporation of structural information (which is presently limited due to paucity of AFP structures) and better selection of physicochemical properties of amino acids for making the feature vector in predicting AFPs. We will further explore the possibilities of application of various feature selection techniques to reduce the dimensionality of the feature vectors to avoid over-fitting data, which we believe will improve the classification accuracy.
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